686 research outputs found
Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions
The specific mechanisms which leads to the formation of fractal
nanostructures by pulsed laser deposition remain elusive despite intense
research efforts, motivated mainly by the technological interest in obtaining
tailored nanostructures with simple and scalable production methods. Here we
focus on fractal nanostructures of titanium dioxide, , a strategic
material for many applications, obtained by femtosecond laser ablation at
ambient conditions. We model the fractal formation through extensive Monte
Carlo simulations based on a set of minimal assumptions: irreversible sticking
and size independent diffusion. Our model is able to reproduce the fractal
dimensions and the area distributions of the nanostructures obtained in the
experiments for different densities of the ablated material. The comparison of
theory and experiment show that such fractal aggregates are formed after
landing of the ablated material on the substrate surface by a diffusive
mechanism. Finally we discuss the role of the thermal conductivity of the
substrate and the laser fluence on the properties of the fractal
nanostructures. Our results represent an advancement towards controlling the
production of fractal nanostructures by pulsed laser deposition.Comment: 21 page
Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems
The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Î , an optimal solution OPT for Î in I and an instance IâČ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Î in I', either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletion
Stable Heterogeneity for the Production of Diffusible Factors in Cell Populations
The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient. Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of evolutionary game theory and likely to be common in cell populations
Cooperation among cancer cells: applying game theory to cancer
Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation
Coupled wave-2D hydrodynamics modeling at the Reno River mouth (Italy) under climate change scenarios
This work presents the results of the numerical study implemented for the natural area of Lido di Spina, a touristic site along the Italian coast of the North Adriatic Sea, close to the mouth of River Reno. High-resolution simulations of nearshore dynamics are carried out under climate change conditions estimated for the site. The adopted modeling chain is based on the implementation of multiple-nested, open-source numerical models. More specifically, the coupled wave-2D hydrodynamics runs, using the open-source TELEMAC suite, are forced at the offshore boundary by waves resulting from the wave model (SWAN) simulations for the Adriatic Sea, and sea levels computed following a joint probability analysis approach. The system simulates presentday scenarios, as well as conditions reflecting the high IPCC greenhouse concentration trajectory named RCP8.5 under predicted climate changes. Selection of sea storms directed from SE (Sirocco events) and E-NE (Bora events) is performed together with Gumbel analysis, in order to define ordinary and extreme sea conditions. The numerical results are here presented in terms of local parameters such as wave breaking position, alongshore currents intensity and direction and flooded area, aiming to provide insights on how climate changes may impact hydrodynamics at a site scale. Although the wave energy intensity predicted for Sirocco events is expected to increase only slightly, modifications of the wave dynamics, current patterns, and inland flooding induced by climate changes are expected to be significant for extreme conditions, especially during Sirocco winds, with an increase in the maximum alongshore currents and in the inundated area compared to past conditions. \ua9 2018 by the authors
Investigation of early supplementation of nucleotides on the intestinal maturation of weaned piglets
Nucleotides are essential for the development of the gastrointestinal tract and immune function, but their intake with milk by piglets could be insufficient. The effect of nucleotides on growth and health was tested on 98 piglets divided into two groups: NU, orally administrated with 4 mL of a nucleotide-based product (SwineMODÂź ) at 10, 15, 18, 21, 27 days, or not (CO). Blood and feces were sampled at weaning (26 d, T1), and at 38 d (T2). Per each group and time-point, eight piglets were slaughtered and jejunal Peyerâs patches (JPPs) were collected. NU increased hemoglobin content and hematocrit, but not growth. At weaning, the NU fecal microbiota was characterized by the abundance of Campylobacteraceae, more typical of the growing phase, compared to CO, with a greater abundance of Streptococcaceae. For the blood transcriptome, an initial greater inflammatory activation was seen in CO, while at T2, NU enriched gene sets related to erythropoiesis. The activation of gene groups ranging from epigenetic response to transcriptional regulation evidenced an intense proliferative activity in NU JPPs. NU supplementation did not influence the growth performance of piglets but could have expressed a positive effect on pig microbiota anticipating its maturation at weaning. This immunostimulant activity in the JPPs could moderate the inflammation in the immediate pre-weaning
Deployment and design of multiantenna solutions for fixed WiMAX systems
WiMax has already attracted the attention of operators and manifacturing industries for its promise of large throughput and coverage in broadband wireless access. However, towards the goal of an efficient deployment of this technology, a thorough analysis of its performance in presence of frequency reuse under realistic traffic conditions is mandatory. In particular, an important performance limiting factor is the inter-cell interference, which has strong non-stationary features. This paper investigates the deployment of multi-antenna base stations and the related design of signal processing algorithms for interference mitigation, for the uplink of IEEE 802.16-2004 systems. Extensive numerical results for realistic interference models show the advantages of the proposed multi-antenna system
Evolutionary dynamics of tumor-stroma interactions in multiple myeloma
Cancer cells and stromal cells cooperate by exchanging diffusible factors that sustain tumor growth, a form of frequency-dependent selection that can be studied in the framework of evolutionary game theory. In the case of multiple myeloma, three types of cells (malignant plasma cells, osteoblasts and osteoclasts) exchange growth factors with different effects, and tumor-stroma interactions have been analysed using a model of cooperation with pairwise interactions. Here we show that a model in which growth factors have autocrine and paracrine effects on multiple cells, a more realistic assumption for tumor-stroma interactions, leads to different results, with implications for disease progression and treatment. In particular, the model reveals that reducing the number of malignant plasma cells below a critical threshold can lead to their extinction and thus to restore a healthy balance between osteoclast and osteoblast, a result in line with current therapies against multiple myeloma
Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach
The paper presents an application of shoreline monitoring aimed at
understanding the response of a beach to single storms and at identifying its
typical behaviour, in order to be able to predict shoreline changes and to
properly plan the defence of the shore zone. On the study area, in Jesolo
beach (northern Adriatic Sea, Italy), a video monitoring station and an
acoustic wave and current profiler were installed in spring 2013, recording,
respectively, images and hydrodynamic data. The site lacks previous detailed
hydrodynamic and morphodynamic data.
Variations in the shoreline were quantified in combination with available
near-shore wave conditions, making it possible to analyse the relationship
between the shoreline displacement and the wave features. Results denote
characteristic patterns of beach response to storm events, and highlight the
importance of improving beach protection in this zone, notwithstanding the
many interventions experimented in the last decades. A total of 31
independent storm events were selected during the period October
2013âOctober 2014, and for each of them synthetic indexes based on storm
duration, energy and maximum wave height were developed and estimated. It was
found that the net shoreline displacements during a storm are well correlated
with the total wave energy associated to the considered storm by an empirical
power law equation. A sub-selection
of storms in the presence of an artificial dune protecting the beach (in the
winter season) was examined in detail, allowing to conclude that the adoption
of this coastal defence strategy in the study area can reduce shoreline
retreat during a storm. This type of intervention can sometimes contribute to
prolonging overall stability not only in the replenished zone but also in
downdrift areas.
The implemented methodology, which confirms to be economically attractive if
compared to more traditional monitoring systems, proves to be a valuable
system to monitor beach erosive processes and provide detailed indications on
how to better plan beach-maintenance activities. The presented methodology
and the proposed results can therefore be used as a basis for improving the
collaboration between coastal scientists and managers to solve beach erosion
problems, in locations where data are scattered and sporadic.</p
- âŠ