5,092 research outputs found

    Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior

    Get PDF
    We present an experimental and theoretical study of the phase behavior of a binary mixture of colloids with opposite adsorption preferences in a critical solvent. As a result of the attractive and repulsive critical Casimir forces, the critical fluctuations of the solvent lead to a further critical point in the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid demixing phase transition which is controlled by the solvent temperature. Our experimental findings are in good agreement with calculations based on a simple approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter

    Mean-field dynamical density functional theory

    Full text link
    We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. {\bf 110}, 8032 (1999)], supplied by an equilibrium excess free energy functional that is essentially exact. We complement our theoretical analysis by carrying out extensive Brownian Dynamics simulations. We find excellent agreement between theory and simulations for the whole time evolution of density profiles, demonstrating thereby the validity of the DDFT when an accurate equilibrium free energy functional is employed.Comment: 8 pagers, 4 figure

    Colonic Protein Fermentation and Promotion of Colon Carcinogenesis by Thermolyzed Casein

    Get PDF
    Thermolyzed casein is known to promote the growth of aberrant crypt foci (ACF) and colon cancer when it is fed to rats that have been initiated with azoxymethane. We speculated that the promotion was a consequence of increased colonic protein fermentation (i.e., that the thermolysis of the casein decreases its digestibility, increases the amount of protein reaching the colon, and increases colonic protein fermentation and that the potentially toxic products of this fermentation promote colon carcinogenesis). We found that the thermolysis of casein reduces its digestibility and increases colonic protein fermentation, as assessed by fecal ammonium and urinary phenol, cresol, and indol-3-ol. Thermolysis of two other proteins, soy and egg white protein, also increases colonic protein fermentation with increased fecal ammonia and urinary phenols, and thermolysis of all three proteins increases the levels of ammonia and butyric, valeric, and i-valeric acids in the cecal contents. We found, however, that the increased protein fermentation observed with thermolysis is not associated with pro-motion of colon carcinogenesis. With casein, the kinetics of protein fermentation with increasing thermolysis time are clearly different from the kinetics of promotion of ACF growth. The formation of the fermentation products was highest when the protein was thermolyzed for one hour, whereas promotion was highest for protein that had been thermolyzed for two or more hours. With soy and egg white, thermolysis increased colonic protein fermentation but did not promote colon carcinogenesis. Thus, although thermolysis of dietary casein increases colonic protein fermentation, products of this fermentation do not appear to be responsible for the promotion of colon carcinogenesis. Indeed, the results suggest that protein fermentation products do not play an important role in colon cancer promotion

    Dynamical density functional theory for dense atomic liquids

    Get PDF
    Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We show that when the isothermal compressibility is small, the DDFT generates the correct value for the speed of sound in a dense liquid. We also interpret the theory as a dynamical equation for a coarse grained fluid density and show that the theory can be used (making further approximations) to derive the standard mode coupling theory that is used to describe the glass transition. The present theory should provide a useful starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte

    Enhanced Tissue Integration During Cartilage RepairIn VitroCan Be Achieved by Inhibiting Chondrocyte Death at the Wound Edge

    Get PDF
    Objective: Experimental wounding of articular cartilage results in cell death at the lesion edge. The objective of this study was to investigate whether inhibition of this cell death results in enhanced integrative cartilage repair. Methods: Bovine articular cartilage discs (6mm) were incubated in media containing inhibitors of necrosis (Necrostatin-1, Nec-1) or apoptosis (Z-VAD-FMK, ZVF) before cutting a 3mm inner core. This core was left in situ to create disc/ring composites, cultured for up to 6 weeks with the inhibitors, and analyzed for cell death, sulfated glycosaminoglycan release, and tissue integration. Results: Creating the disc/ring composites resulted in a significant increase in necrosis. ZVF significantly reduced necrosis and apoptosis at the wound edge. Nec-1 reduced necrosis. Both inhibitors reduced the level of wound-induced sulfated glycosaminoglycan loss. Toluidine blue staining and electron microscopy of cartilage revealed significant integration of the wound edges in disc/ring composites treated with ZVF. Nec-1 improved integration, but to a lesser extent. Push-out testing revealed that ZVF increased adhesive strength compared to control composites. Conclusions: This study shows that treatment of articular cartilage with cell death inhibitors during wound repair increases the number of viable cells at the wound edge, prevents matrix loss, and results in a significant improvement in cartilage-cartilage integration

    Augmented collisional ionization via excited states in XUV cluster interactions

    Full text link
    The impact of atomic excited states is investigated via a detailed model of laser-cluster interactions, which is applied to rare gas clusters in intense femtosecond pulses in the extreme ultraviolet (XUV). This demonstrates the potential for a two-step ionization process in laser-cluster interactions, with the resulting intermediate excited states allowing for the creation of high charge states and the rapid dissemination of laser pulse energy. The consequences of this excitation mechanism are demonstrated through simulations of recent experiments in argon clusters interacting with XUV radiation, in which this two-step process is shown to play a primary role; this is consistent with our hypothesis that XUV-cluster interactions provide a unique window into the role of excited atomic states due to the relative lack of photoionization and laser field-driven phenomena. Our analysis suggests that atomic excited states may play an important role in interactions of intense radiation with materials in a variety of wavelength regimes, including potential implications for proposed studies of single molecule imaging with intense X-rays.Comment: 4 pages, 2 figure

    P-glycoprotein and metallothionein expression and resistance to chemotherapy in osteosarcoma.

    Get PDF
    The expression of the drug resistance (DR) mediators P-glycoprotein (P-gp) and the metallothioneins (MT) was assessed immunohistochemically in biopsy material from patients with high-grade malignant osteosarcoma (OS). No significant difference was found in survival rate between expressors of both P-gp and MT and non-expressors. Thus, it was concluded that lack of expression of these two drug resistance-related proteins does not appear to confer any advantage in terms of patient survival in osteosarcoma

    Quasicrystal formation in binary soft matter mixtures

    Get PDF
    Using a strategy that may be applied in theory or in experiments, we identify the regime in which a model binary soft matter mixture forms quasicrystals. The system is described using classical density functional theory combined with integral equation theory. Quasicrystal formation requires particle ordering with two characteristic length scales in certain particular ratios. How the length scales are related to the form of the pair interactions is reasonably well understood for one-component systems, but less is known for mixtures. In our model mixture of big and small colloids confined to an interface, the two length scales stem from the range of the interactions between pairs of big particles and from the cross big-small interactions, respectively. The small-small length scale is not significant. Our strategy for finding quasicrystals involves tuning locations of maxima in the dispersion relation, or equivalently in the liquid state partial static structure factors

    Experimental investigation of orangutans’ lithic percussive and sharp stone tool behaviours

    Get PDF
    Early stone tools, and in particular sharp stone tools, arguably represent one of the most important technological milestones in human evolution. The production and use of sharp stone tools significantly widened the ecological niche of our ancestors, allowing them to exploit novel food resources. However, despite their importance, it is still unclear how these early lithic technologies emerged and which behaviours served as stepping-stones for the development of systematic lithic production in our lineage. One approach to answer this question is to collect comparative data on the stone tool making and using abilities of our closest living relatives, the great apes, to reconstruct the potential stone-related behaviours of early hominins. To this end, we tested both the individual and the social learning abilities of five orangutans to make and use stone tools. Although the orangutans did not make sharp stone tools initially, three individuals spontaneously engaged in lithic percussion, and sharp stone pieces were produced under later experimental conditions. Furthermore, when provided with a human-made sharp stone, one orangutan spontaneously used it as a cutting tool. Contrary to previous experiments, social demonstrations did not considerably improve the stone tool making and using abilities of orangutans. Our study is the first to systematically investigate the stone tool making and using abilities of untrained, unenculturated orangutans showing that two proposed pre-requisites for the emergence of early lithic technologies–lithic percussion and the recognition of sharp-edged stones as cutting tools–are present in this species. We discuss the implications that ours and previous great ape stone tool experiments have for understanding the initial stages of lithic technologies in our lineage

    Mode-coupling theory and the fluctuation-dissipation theorem for nonlinear Langevin equations with multiplicative noise

    Full text link
    In this letter, we develop a mode-coupling theory for a class of nonlinear Langevin equations with multiplicative noise using a field theoretic formalism. These equations are simplified models of realistic colloidal suspensions. We prove that the derived equations are consistent with the fluctuation-dissipation theorem. We also discuss the generalization of the result given here to real fluids, and the possible description of supercooled fluids in the aging regime. We demonstrate that the standard idealized mode-coupling theory is not consistent with the FDT in a strict field theoretic sense.Comment: 14 pages, to appear in J. Phys.
    • 

    corecore