7 research outputs found

    Biofunctionalized Capillary Flow Channel Platform Integrated with 3D Nanostructured Matrix to Capture Circulating Tumor Cells

    Get PDF
    Circulating tumor cells (CTCs) from peripheral blood account genetic information for cancer diagnosis and overall disease monitoring. Analysis of “liquid biopsy” holds immense promise as it may lead to new approaches for cancer treatment. The study reports effective and continuous flow microchannel system for isolating CTCs using transferrin conjugated 3D matrix synthesized by crosslinking polyethylene glycol-Fe3O4 nanostructures for rapid and efficient capturing of CTCs. The platform provides option of using multiple microchannel units in series that can influence higher cell-capture efficiency due to increasing cell-substrate contact frequency. CTCs are captured with high efficiency even at low concentration of target cells (~90% at 25 cells per mL blood). Furthermore, the study demonstrates that the cell-capture performance is influenced by topographic interactions between nanostructure based matrix and cancer cells of interest. In addition, this study demonstrates the “proof of concept” using 3D microchannel system having capacity of simultaneously capturing and permanently eliminating CTCs from peripheral blood samples. Further, the study evaluates clinical samples of colon and breast cancer patients for rapid isolation of CTCs. Conclusively, the present platform demonstrates inordinate capacity for cancer cell sorting, biological studies of CTCs, and cancer metastasis, potentially benefiting the real time liquid biopsy and early prognosis of cancer

    SMAR1-derived P44 peptide retains its tumor suppressor function through modulation of p53

    No full text
    The use of pharmacologically active short peptide sequences is a better option in cancer therapeutics than the full-length protein. Here we report one such 44-mer peptide sequence of SMAR1 (TAT-SMAR1 wild type, P44) that retains the tumor suppressor activity of the full-length protein. The protein transduction domain of human immunodeficiency virus, type 1, Tat protein was used here to deliver the 33-mer peptide of SMAR1 into the cells. P44 peptide could efficiently activate p53 by mediating its phosphorylation at serine 15, resulting in the activation of p21 and in effect regulating cell cycle checkpoint. In vitro phosphorylation assays with point-mutated P44-derived peptides suggested that serine 347 of SMAR1 was indispensable for its activity and represented the substrate motif for the protein kinase C family of proteins. Using xenograft nude mice models, we further demonstrate that P44 was capable of inhibiting tumor growth by preventing cellular proliferation. P44 treatment to tumor-bearing mice prevented the formation of poorly organized tumor vasculature and an increase in hypoxia-inducible factor-1α expression, both being signatures of tumor progression. The chimeric TAT-SMAR1-derived peptide, P44, thus has a strong therapeutic potential as an anticancer drug

    A novel inhibitor of hypoxia-inducible factor-1α P3155 also modulates PI3K pathway and inhibits growth of prostate cancer cells

    No full text
    Abstract Background Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to hypoxia. It is essential for angiogenesis and is associated with tumor progression and overexpression of HIF-1α has been demonstrated in many common human cancers. Therefore, HIF-1α is one of the most compelling anticancer targets. Methods To identify HIF-1α inhibitors, luciferase reporter gene assay under hypoxia and normoxia was used. Detailed studies such as western blotting, RT-PCR, immunofluorescence were carried out to elucidate its mechanism of action. Antiangiogenic activity of P3155 was demonstrated by migration assay and tube formation assay. Efficacy study of P3155 was performed on PC-3 xenograft model. Results P3155 showed specific HIF-1α inhibition with IC50 of 1.4 μM under hypoxia. It suppressed HIF-1α expression as well as PI3K/Akt pathway and abrogated expression of HIF-1-inducible gene viz. vascular endothelial growth factor (VEGF). P3155 in combination with HIF-1α siRNA showed significant synergistic effect. In addition, it demonstrated significant in vivo efficacy and antiangiogenic potential in prostate cancer cell lines. Conclusion We have identified a novel HIF-1α inhibitor P3155 that also modulates PI3K/Akt pathway, which may contribute to its significant in vitro and in vivo antitumor activity.</p

    Gene regulation by SMAR1: role in cellular homeostasis and cancer

    No full text
    Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis

    Tumor suppressor protein SMAR1 modulates the roughness of cell surface: combined AFM and SEM study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Imaging tools such as scanning electron microscope (SEM) and atomic force microscope (AFM) can be used to produce high-resolution topographic images of biomedical specimens and hence are well suited for imaging alterations in cell morphology. We have studied the correlation of SMAR1 expression with cell surface smoothness in cell lines as well as in different grades of human breast cancer and mouse tumor sections.</p> <p>Methods</p> <p>We validated knockdown and overexpression of SMAR1 using RT-PCR as well as Western blotting in human embryonic kidney (HEK) 293, human breast cancer (MCF-7) and mouse melanoma (B16F1) cell lines. The samples were then processed for cell surface roughness studies using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The same samples were used for microarray analysis as well. Tumors sections from control and SMAR1 treated mice as well as tissues sections from different grades of human breast cancer on poly L-lysine coated slides were used for AFM and SEM studies.</p> <p>Results</p> <p>Tumor sections from mice injected with melanoma cells showed pronounced surface roughness. In contrast, tumor sections obtained from nude mice that were first injected with melanoma cells followed by repeated injections of SMAR1-P44 peptide, exhibited relatively smoother surface profile. Interestingly, human breast cancer tissue sections that showed reduced SMAR1 expression exhibited increased surface roughness compared to the adjacent normal breast tissue. Our AFM data establishes that treatment of cells with SMAR1-P44 results into increase in cytoskeletal volume that is supported by comparative gene expression data showing an increase in the expression of specific cytoskeletal proteins compared to the control cells. Altogether, these findings indicate that tumor suppressor function of SMAR1 might be exhibited through smoothening of cell surface by regulating expression of cell surface proteins.</p> <p>Conclusion</p> <p>Tumor suppressor protein SMAR1 might be used as a phenotypic differentiation marker between cancerous and non-cancerous cells.</p
    corecore