167 research outputs found

    Complex flow in lowest crustal, anastomosing mylonites: Strain gradients in a Kohistan gabbro, northern Pakistan

    No full text
    International audienceStrain localization in near paleo-Moho metagabbros of the Kohistan Arc, northern Pakistan, produced anastomosing shear zones. The two-dimensional (2-D) analysis of strain gradients in planes parallel to the general flow direction reveals simple shear strain >7 combined with about 50% surface loss. The pargasite-garnet assemblage of the mylonite has a density 2.8% higher than the protolith, which is insufficient to account for the measured surface loss. Furthermore, major and trace element compositions of the gabbro and the mylonite indicate isochemical deformation. Average V p and acoustic impedance measured at room temperature and up to 300 MPa increase from gabbro through the gradient zone to mylonite; they are consistent with density measurements. The three-dimensional analysis of shape-preferred orientation and lattice-preferred orientation of sheared and synkinematic minerals indicates that the 2-D surface loss reflects sideways and lengthwise material transfer. Sideways and lengthwise material transfers take place in widening and lengthening mylonites, respectively. The anastomosing shear zone pattern impels this complexity of the regional flow. We conclude that shear zones with a thinning component are likely representative of deep crustal flow in other tectonic environments

    Experimental constrains on shear-induced crystal breakage in magmas

    Get PDF
    International audienceCrystal breakage occurs along margins of conduit walls and basal zones of lava flows. It is usually interpreted as flow-related textures developed at large finite strains and strains rates. We have investigated the grain size and shape distributions in an experimentally deformed crystal-melt suspension in order to constrain the temperature T, the strain γ and the strain rate γr ranges of the crystal breakage process. The starting crystal-melt suspension is composed of a haplogranitic melt with 54 vol% alumina crystals. Torsion experiments were performed in a gas medium Paterson apparatus at 300 MPa confining pressure and subsolidus temperatures. Crystal size distribution and aspect ratio of alumina grains were measured on polished sections normal to the shear direction, i.e. from the centre to the rim of the deformed cylinders. A first minor occurrence of crystal breakage is evidenced in all experiments and low strains. It is related to intense stress localisation at some grain contacts in the initially connected solid framework. A second intense and penetrative crystal breakage process is observed for T≤ 550°C and γr > 6.2x10-4 s- 1. The evolution of the size distribution as a function of finite strain and the reduced aspect ratios of preserved largest crystals in intensely strained zones support that breakage occurs by abrasion of the larger crystals. This abrasion can be attributed to the partial stress propagation over both the melt and partially isolated crystals under visco-elastic conditions. Mechanical data show a transition from slight shear softening at low strain rates and highest temperatures to strain hardening for experiments that produced penetrative crystal breakage. The crystal-melt suspension exhibits a shear thinning behaviour with a stress exponent larger than 2.06 over the explored strain rate and temperature domain for the experiments without intensive crystal breakage. Our results are applicable to the interpretation of the crystal breakage often observed at the base of lava flows, in domes, and near conduit walls. This experimental reproduction of a process observed in nature is important because the controls of stress-induced breakage we quantified are also key parameters governing magma transport

    Experimental simulation of magma mixing at high pressure

    No full text
    International audienceMagma mixing features are observed in many plutonic and volcanic environments. They result from the juxtaposition of two chemically contrasted magmas, usually during the replenishment of a magmatic reservoir, but also syn-eruptively within the conduit. Despite its ubiquity, only a few experimental studies have explored mixing between magmas. Existing data have been mostly acquired at atmospheric pressure and high shear rates (> 10- 1 s- 1), which differ from those accompanying magma mixing in reservoirs. To fill this gap, we performed high pressure mixing experiments at strain rates ranging from 4.10- 4 to 1.10- 3 s- 1. Layers of a synthetic crystal-free haplotonalite and a natural partially-molten basalt were juxtaposed in a Paterson apparatus at 300 MPa, and deformed between 900 and 1200 °C. The experiments shed light on the first stages of magma mixing and illustrate the role and behavior of crystals, either pre-existing or newly grown. Experiments evidence a rheological threshold for mafic material disruption, which sets in abruptly as its melt fraction exceeds 50%, which in the experiments occurs in the narrow temperature interval 1160-1170 °C. Below this threshold, plagioclase crystals in the mafic magma form a rigid touching network and all the deformation is accommodated by the less viscous felsic layer. Above it the crystal network collapses, allowing typical mingling/mixing features to appear altogether, such as enclaves, melt filaments or single xenocrysts isolated into the felsic end-member, coexisting with newly grown phases (plagioclase and pyroxene) whose compositions spread out over considerable ranges. The pre-existing fabric of the mafic magma is only slightly affected by deformation, altogether providing few clues on either the regime or geometry of applied deformation during the magmatic stage

    Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: II. Overpressure and depth distributions

    Get PDF
    International audienceA type example of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. These explosions are interpreted to be caused by the pressurization of a conduit by a shallow highly crystalline and degassed magma plug. We test such an interpretation by combining the pressures and porosities of the pre-explosive magma column proposed by Burgisser et al. (2010, doi:10.1016/j.jvolgeores.2010.04.008) into a physical model that reconstructs a depth-referenced density profile of the column for four mechanisms of pressure buildup. Each mechanism yields a different overpressure profile: 1) gas accumulation, 2) conduit wall elasticity, 3) microlite crystallization, and 4) magma flowage. For the first three mechanisms, the three-part vertical layering of the conduit prior to explosion was spatially distributed as a dense cap atop the conduit with a thickness of a few tens of meters, a transition zone of 400–700 m with heterogeneous vesicularities, and, at greater depth, a more homogeneous, low-porosity zone that brings the total column length to ~ 3.5 km. A shorter column can be obtained with mechanism 4: a dense cap of less than a few meters, a heterogeneous zone of 200–500 m, and a total column length as low as 2.5 km. Inflation/deflation cycles linked to a periodic overpressure source offer a dataset that we use to constrain the four overpressure mechanisms. Magma flowage is sufficient to cause periodic edifice deformation through semi-rigid conduit walls and build overpressures able to trigger explosions. Gas accumulation below a shallow plug is also able to build such overpressures and can occur regardless of magma flowage. The concurrence of these three mechanisms offers the highest likelihood of building overpressures leading to the 1997 explosion series. We also explore the consequences of sudden (eruptive) overpressure release on our magmatic columns to assess the role of syn-explosive vesiculation and pre-fragmentation column expansion. We find that large shallow overpressures and efficient syn-explosive vesiculation cause the most dramatic pre-fragmentation expansion. This leads us to depict two end-member pictures of a Vulcanian explosion. The first case corresponds to the widely accepted view that the downward motion of a fragmentation front controls column evacuation. In the second case, syn-explosive column expansion just after overpressure release brings foamed-up magma up towards an essentially stationary and shallow fragmentation front

    Porosity redistribution enhanced by strain localization in crystal-rich magmas

    Get PDF
    International audienceMagma degassing, characterized by changes in permeability and porosity distribution, has a crucial control on the style of eruption. During ascent, magma might develop large porosities and crystallise while it is subjected to shear. Shear, in turn, enhances complex fabrics that result from the reorganization of the different phases (crystals, gas, melt). Such fabrics have not yet been evaluated experimentally on a 3-phase system. We performed torsion experiments on a synthetic crystal-rich hydrous magma at subsolidus conditions with 11 vol.% porosity to establish a link between strain partitioning and porosity redistribution. Crystals induce non-Newtonian deformation, resulting in localization of the shear strain. 3-D microtomography and 2-D Scanning Electron Microprobe (SEM) imaging show gas accumulation in local microstructures caused by shear-induced crystal fabric. Our data show that strain localization is a mechanism that could enable magma degassing at very low vesicularity

    Water content of 1997 vulcanian pumices at Soufriere Hills Volcano (Montserrat) and implications on pre-eruptive conduit conditions

    No full text
    International audienceA series of 88 Vulcanian explosions occurred at Soufriere Hills Volcano (Montserrat) between August and October 1997. Conduit conditions prior to each explosion have been explored by analysing representative textures of the eruptive products. We used quantitative analysis of water content in residual glasses (matrix glass) in order to constrain the sampling depth of these ejecta. Studied textures cover the natural range of Vulcanian products and include homogeneous fallout pumices, glassy blocks, banded rocks and dome samples. To better link water content to structural level, we performed new water solubility experiments at low pressure (less than 750 bars) and high temperature (850-1050°C) in internally heated pressure vessel on synthetic rhyolitic glass of the same composition than the natural matrix glass

    Pre-explosive conduit conditions of the 1997 Vulcanian explosions at Soufrière Hills Volcano, Montserrat: I. Pressure and vesicularity distributions

    Get PDF
    International audienceAn authoritative case of Vulcanian eruptive dynamics is the series of 88 explosions that occurred between August and October 1997 at Soufrière Hills volcano on Montserrat Island. The state of the magmatic column just before a Vulcanian explosion is still poorly understood, but conditions the eruptive style. This study establishes such a pre-explosive stratigraphy by 1) documenting the textures covering the range of the 1997 products, 2) quantitative analysis of H2O content in interstitial glass measured by Karl–Fischer Titration, and 3) combining these data with a simple model linking pre- and post-explosive vesicularities. The model shows that syn-explosive degassing affects greatly the way porosity evolves by decompression during an explosion. The stratigraphy reconstruction shows a three-part vertical layering of the conduit prior to explosion with overall denser values than those previously suggested. A dense and strongly degassed plug caps the column. It is underlain by a shallow transition zone featuring complex mingling between vesicular and dense magma up to 10 MPa. At higher pressure, up to 80 MPa, lies a more homogeneous zone of relatively dense (10–20 vol.%) magma, which was emplaced under partly open-system degassing. This conduit stratigraphy gives the vision of a strongly heterogeneous magma column immediately prior to its disruption. Our analysis suggests that fragmenting such a composite magma cannot happen in a single coherent pulse, but rather as stages. The transition zone contains heterogeneous amounts of exsolved gas that could explain the pulsatory nature of the Vulcanian jets at the beginning of the explosions. This contrasts with the nearly constant vesicularities of the deeper part of the pre-explosive magma column, which are propitious to a general, short-lived disruption

    Rheology and microstructure of experimentally deformed plagioclase suspensions

    Get PDF
    International audienceWe present the result of the first deformation experiments at high-temperatures and high-pressures on synthetic magmatic suspensions of strongly anisometric particles. The results highlight the interplay between the rheological response and the development of microstructures and they demonstrate the critical importance of the shape of crystals on the mechanical behaviour of magmas. Plagioclase suspensions with two crystal fractions (0.38 and 0.52) were deformed both in compression and in torsion in a Paterson apparatus. With increasing crystal fraction, the rheological behaviour of the magmatic suspension evolves from nearly steady-state flow to shear weakening, this change being correlated with a microstructural evolution from a pervasive strain to a strain partitioning fabric. Magmatic suspensions of plagioclase have viscosities approximately five orders of magnitude higher than suspensions of equivalent crystallinities made of isometric particles such as quartz

    The Ikaria high-temperature Metamorphic Core Complex (Cyclades, Greece): Geometry, kinematics and thermal structure

    Get PDF
    International audienceThis work attempted at clarifying the structure of Ikaria using primarily intensive geological mapping combined with structural analysis and a geothermometry approach of Raman spectrometry of carbonaceous material. Foliation over the whole island defines a structural dome cored by high-grade to partially-molten rocks. Its exhumation was completed by two top-to-the-N ductile extensional shear zones, operating in the ductile and then the brittle fields, through a single extensional event coeval with progressive strain localization. The thermal structure of the dome with regard to position of ductile shear zones was retrieved using the Raman spectroscopy of carbonaceous material. Peak-metamorphic temperatures range from 390 °C in the upper parts of the structure down to 625 °C in the core of the dome in the vicinity of migmatites and S-type granite. Pioneer in situ U-Th-Pb analyses on monazite performed on the leucosome parts of these rock yielded a 15.7 ± 0.2 Ma age. Ikaria Island thus completes the series of Miocene migmatite-cored Metamorphic Core Complex in the central part of the Aegean domain where a genuine high-temperature zone can be defined as the central Aegean HT zone. There, the extreme stretching of the continental crust is associated with dominantly top-to-the-N kinematics

    Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat

    Get PDF
    International audienceSoufrière Hills Volcano had two periods of repetitive Vulcanian activity in 1997. Each explosion discharged the contents of the upper 0.5–2 km of the conduit as pyroclastic flows and fallout: frothy pumices from a deep, gas-rich zone, lava and breadcrust bombs from a degassed lava plug, and dense pumices from a transition zone. Vesicles constitute 1–66 vol.% of breadcrust bombs and 24–79% of pumices, all those larger than a few tens of µm being interconnected. Small vesicles ( few hundreds of µm) in pumices are interpreted as pre-dating explosion, implying pre-explosive conduit porosities up to 55%. About a sixth of large vesicles in pumices, and all those in breadcrust bombs, are angular voids formed by syn-explosive fracturing of amphibole phenocrysts. An intermediate-sized vesicle population formed by coalescence of the small syn-explosive bubbles. Bubble nucleation took place heterogeneously on titanomagnetite, number densities of which greatly exceed those of vesicles, and growth took place mainly by decompression. Development of pyroclast vesicle textures was controlled by the time interval between the onset of explosion–decompression and surface quench in contact with air. Lava-plug fragments entered the air quickly after fragmentation (not, vert, similar 10 s), so the interiors continued to vesiculate once the rinds had quenched, forming breadcrust bombs. Deeper, gas-rich magma took longer (not, vert, similar 50 s) to reach the surface, and vesiculation of resulting pumice clasts was essentially complete prior to surface quench. This accounts for the absence of breadcrusting on pumice clasts, and for the textural similarity between pyroclastic flow and fallout pumices, despite different thermal histories after leaving the vent. It also allowed syn-explosive coalescence to proceed further in the pumices than in the breadcrust bombs. Uniaxial boudinage of amphibole phenocrysts in pumices implies significant syn-explosive vesiculation even prior to magma fragmentation, probably in a zone of steep pressure gradient beneath the descending fragmentation front. Syn-explosive decompression rates estimated from vesicle number densities (> 0.3–6.5 MPa s− 1) are consistent with those predicted by previously published numerical models
    • …
    corecore