46 research outputs found

    Numerical Studies of Wave Generation Using Spiral Detonating Cord

    Get PDF
    Abstract. The control of underwater explosions is an industrial concern. In this paper, a comparison of experimental and numerical results of high-pressure generation using underwater explosion of spiral detonating cord is presented. To demonstrate that the converging process of underwater shock wave yields high pressure near the spiral center, the experimental investigation aims to compare underwater shock wave pressures obtained with several detonating cord geometrical configurations and study the wave converging process for a spiral cord. Because the experimental approach of these fast transient events is expensive and time-consuming, numerical simulations of experimental cases by using multi-material Eulerian formulation are carried out. The multi-material Eulerian, which is a particular multi-material ALE (Arbitrary Lagrangian Eulerian) formulation was successfully used in many industrial applications involving computational fluid dynamic problems. By using an explicit finite element method, a good agreement between numerical and experimental results will valid multi-material Eulerian formulation abilities to solve accurately underwater shock wave problems for spiral detonating cord in various shapes

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    EULER-LAGRANGE COUPLING WITH DEFORMABLE POROUS SHELLS

    Get PDF
    A newly developed approach for tridimensional fluidstructure interaction with a deformable thin porous media is presented under the framework of the LS-DYNA software. The method presented couples a Arbitrary Lagrange Euler formulation for the fluid dynamics and a updated Lagrangian finite element formulation for the thin porous medium dynamics. The interaction between the fluid and porous medium are handled by a Euler-Lagrange coupling, for which the fluid and structure meshes are superimposed without matching. The coupling force is computed with an anisotropic Ergun porous flow model. As test case, the method is applied to an anchored porous MIL-c-7020 type III fabric placed in an air stream

    A conservative coupling algorithm between a compressible flow and a rigid body using an Embedded Boundary method

    Get PDF
    This paper deals with a new solid-fluid coupling algorithm between a rigid body and an unsteady compressible fluid flow, using an Embedded Boundary method. The coupling with a rigid body is a first step towards the coupling with a Discrete Element method. The flow is computed using a Finite Volume approach on a Cartesian grid. The expression of numerical fluxes does not affect the general coupling algorithm and we use a one-step high-order scheme proposed by Daru and Tenaud [Daru V,Tenaud C., J. Comput. Phys. 2004]. The Embedded Boundary method is used to integrate the presence of a solid boundary in the fluid. The coupling algorithm is totally explicit and ensures exact mass conservation and a balance of momentum and energy between the fluid and the solid. It is shown that the scheme preserves uniform movement of both fluid and solid and introduces no numerical boundary roughness. The effciency of the method is demonstrated on challenging one- and two-dimensional benchmarks

    Observations from Preliminary Experiments on Spatial and Temporal Pressure Measurements from Near-Field Free Air Explosions

    Get PDF
    It is self-evident that a crucial step in analysing the performance of protective structures is to be able to accurately quantify the blast load arising from a high explosive detonation. For structures located near to the source of a high explosive detonation, the resulting pressure is extremely high in magnitude and highly non-uniform over the face of the target. There exists very little direct measurement of blast parameters in the nearfield, mainly attributed to the lack of instrumentation sufficiently robust to survive extreme loading events yet sensitive enough to capture salient features of the blast. Instead literature guidance is informed largely by early numerical analyses and parametric studies. Furthermore, the lack of an accurate, reliable data set has prevented subsequent numerical analyses from being validated against experimental trials. This paper presents an experimental methodology that has been developed in part to enable such experimental data to be gathered. The experimental apparatus comprises an array of Hopkinson pressure bars, fitted through holes in a target, with the loaded faces of the bars flush with the target face. Thus, the bars are exposed to the normally or obliquely reflected shocks from the impingement of the blast wave with the target. Pressure-time recordings are presented along with associated Arbitary-Langrangian-Eulerian modelling using the LS-DYNA explicit numerical code. Experimental results are corrected for the effects of dispersion of the propagating waves in the pressure bars, enabling accurate characterisation of the peak pressures and impulses from these loadings. The combined results are used to make comments on the mechanism of the pressure load for very near-field blast events

    A Numerical Investigation of Blast Loading and Clearing on Small Targets

    Get PDF
    When a blast wave strikes a finite target, diffraction of the blast wave around the free edge causes a rarefaction clearing wave to propagate along the loaded face and relieve the pressure acting at any point it passes over. For small targets, the time taken for this clearing wave to traverse the loaded face will be small in relation to the duration of loading. Previous studies have not shown what happens in the late-time stages of clearing relief, nor the mechanism by which the cleared reflected pressure decays to approach the incident pressure. Current design guidance assumes a series of interacting clearing waves propagate over the target face - this assumption is tested in this article by using numerical analysis to evaluate the blast pressure acting on small targets subjected to blast loads. It is shown that repeat propagations of the rarefaction waves do not occur and new model is proposed, based on an over-expanded region of air in front of the loaded face of the target

    Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve

    Get PDF
    This study developed a realistic 3D FSI computational model of the aortic valve using the fixed-grid method, which was eventually employed to investigate the effect of the leaflet thickness inhomogeneity and leaflet mechanical nonlinearity and anisotropy on the simulation results. The leaflet anisotropy and thickness inhomogeneity were found to significantly affect the valve stress-strain distribution. However, their effect on valve dynamics and fluid flow through the valve were minor. Comparison of the simulation results against in-vivo and in-vitro data indicated good agreement between the computational models and experimental data. The study highlighted the importance of simulating multi-physics phenomena (such as fluid flow and structural deformation), regional leaflet thickness inhomogeneity and anisotropic nonlinear mechanical properties, to accurately predict the stress-strain distribution on the natural aortic valve

    Euler-Lagrange coupling for porous parachute canopy analysis

    No full text
    We apply a new Euler-Lagrange coupling method to 3-D parachute problems, which generally involve fluid-structure interactions between a flexible, elastic, porous parachute canopy and a high-speed airflow. The method presented couples an Arbitrary Lagrange Euler formulation for the fluid dynamics and an updated Lagrangian finite element formulation for the parachute canopy. The Euler-Lagrange coupling handles fluid-structure interaction without matching the fluid and structure meshes. In order to take account of the effect of the parachute permeability, this coupling computes interaction forces based on the Ergun porous flow model. This paper provides validations for the technique when considering parachute applications and discusses the interest of this development to the parachute designer
    corecore