71 research outputs found
Cerebellar Modules and Their Role as Operational Cerebellar Processing Units
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form
GCT-03. MonoGerm, a novel proof-of-principle Bayesian phase II trial design of carboplatin or vinblastine monotherapy induction prior to radiotherapy for intracranial germinoma [Abstract]
BACKGROUND
Current European standard-of-care for localised intracranial germinoma is multi-agent chemotherapy (carboPEI: carboplatin/etoposide/ifosfamide) followed by definitive radiotherapy, with excellent survival. MonoGerm is a de-escalation, non-inferiority trial aiming to reduce toxicity. Twelve-week carboplatin (PMID:8039122) AUC10 or vinblastine (PMIDs:32642701/34520101) induction will be evaluated to test if as effective as carboPEI from SIOP-CNS-GCT-II. A novel trial design was required to answer this question pragmatically/safely.
METHODS
Clinical trials in rare diseases recruit slowly, allowing continuous monitoring of efficacy outcomes. Efficacy-transition-pathways (ETP) are innovative visual tools to aid determination of trial design parameters, and an extension of the dose-transition-pathways concept introduced for dose-finding trials (PMID:28733440).
RESULTS
MonoGerm includes two monotherapies, with each single arm recruiting six cohorts of three patients, with interim assessment after each recruited cohort and final analysis at 18 patients (total n=36). Insufficient tumour volume response (<30%) at 6-week safety MRI results in 12-weeks carboPEI. Primary outcome is radiological complete response (CR) by 12-weeks of induction monotherapy. A beta-binomial conjugate analysis will generate posterior probability distributions, combining observed trial data as realisations from a binomial distribution with a minimally informative Beta (1,1) prior. Decision criteria to allow early stopping at interim analyses and go/no-go decisions at final analysis are based on probabilities from these posterior distributions. ETP visually maps out parameters used to assert decisions after each interim assessment as a pyramid decision tree. For each recruited cohort and every CR outcome, estimates of the true CR rate and probabilities with associated decisions are mapped out. ETP allows clear communication between statisticians, clinicians, and patient-public-involvement (PPI) teams, facilitating informed decisions in an efficient/realistic trial design.
CONCLUSION
MonoGerm, a novel Bayesian de-escalation trial, funded by Little Princess Trust (https://www.littleprincesses.org.uk/), uses ETP and continuous monitoring with built-in stopping rules to ensure patient safety in this treatment de-escalation trial
Phase II study of intravenous etoposide in patients with relapsed ependymoma (CNS 2001 04)
BackgroundRelapsed ependymoma has a dismal prognosis, and the role of chemotherapy at relapse remains unclear. This study prospectively evaluated the efficacy of intensive intravenous (IV) etoposide in patients less than 21 years of age with relapsed intracranial ependymoma (NCT00278252).MethodsThis was a single-arm, open-label, phase II trial using Gehan’s two-stage design. Patients received IV etoposide 100 mg/m2 on days 1-3, 8-10, and 15-17 of each 28-day cycle, up to maximum of 6 cycles. Primary outcome was radiological response after 3 cycles. Pharmacokinetic analysis was performed in 10 patients.ResultsTwenty-five patients were enrolled and included in the intention-to-treat (ITT) analysis. Three patients were excluded in per-protocol (PP) analysis. After 3 cycles of etoposide, 5 patients (ITT 20%/PP 23%) had a complete response (CR), partial response (PR), or objective response (OR). Nine patients (ITT 36%/PP 41%,) had a best overall response of CR, PR, or OR. 1-year PFS was 24% in ITT and 23% in PP populations. 1-year OS was 56% and 59%, 5-year OS was 20% and 18%, respectively, in ITT and PP populations. Toxicity was predominantly hematological, with 20/25 patients experiencing a grade 3 or higher hematological adverse event.ConclusionsThis study confirms the activity of IV etoposide against relapsed ependymoma, however, this is modest, not sustained, and similar to that with oral etoposide, albeit with increased toxicity. These results confirm the dismal prognosis of this disease, provide a rationale to include etoposide within drug combinations, and highlight the need to develop novel treatments for recurrent ependymoma
Electrophysiological Characterization of The Cerebellum in the Arterially Perfused Hindbrain and Upper Body of The Rat
In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59–67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning
Behavioural Significance of Cerebellar Modules
A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control
Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target
Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.
KEYWORDS:
Craniopharyngioma; IL1-β; Inflammasome; MAPK/ERK pathway; Odontogenesis; Paracrine signalling; Trametini
The climatic impacts of land surface change and carbon management, and the implications for climate-change mitigation policy
http://www.sciencedirect.com/science/journal/14693062Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere
can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not
generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and
latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components
of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate
change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better
understanding of the full climate system. Acknowledging the importance of land surface change as a component of
climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration
of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of
human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize
our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to
environmental change and variability
LILRB2 Interaction with HLA Class I Correlates with Control of HIV-1 Infection.
Natural progression of HIV-1 infection depends on genetic variation in the human major histocompatibility complex (MHC) class I locus, and the CD8+ T cell response is thought to be a primary mechanism of this effect. However, polymorphism within the MHC may also alter innate immune activity against human immunodeficiency virus type 1 (HIV-1) by changing interactions of human leukocyte antigen (HLA) class I molecules with leukocyte immunoglobulin-like receptors (LILR), a group of immunoregulatory receptors mainly expressed on myelomonocytic cells including dendritic cells (DCs). We used previously characterized HLA allotype-specific binding capacities of LILRB1 and LILRB2 as well as data from a large cohort of HIV-1-infected individuals (N = 5126) to test whether LILR-HLA class I interactions influence viral load in HIV-1 infection. Our analyses in persons of European descent, the largest ethnic group examined, show that the effect of HLA-B alleles on HIV-1 control correlates with the binding strength between corresponding HLA-B allotypes and LILRB2 (p = 10-2). Moreover, overall binding strength of LILRB2 to classical HLA class I allotypes, defined by the HLA-A/B/C genotypes in each patient, positively associates with viral replication in the absence of therapy in patients of both European (p = 10-11-10-9) and African (p = 10-5-10-3) descent. This effect appears to be driven by variations in LILRB2 binding affinities to HLA-B and is independent of individual class I allelic effects that are not related to the LILRB2 function. Correspondingly, in vitro experiments suggest that strong LILRB2-HLA binding negatively affects antigen-presenting properties of DCs. Thus, we propose an impact of LILRB2 on HIV-1 disease outcomes through altered regulation of DCs by LILRB2-HLA engagement
Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians
Context. Connectivity assessments typically rely on resistance surfaces derived from habitat models, assuming that higher-quality habitat facilitates movement. This assumption remains largely untested though, and it is unlikely that the same environmental factors determine both animal movements and habitat selection, potentially biasing connectivity assessments. Objectives. We evaluated how much connectivity assessments differ when based on resistance surfaces from habitat versus movement models. In addition, we tested how sensitive connectivity assessments are with respect to the parameterization of the movement models. Methods. We parameterized maximum entropy models to predict habitat suitability, and step selection functions to derive movement models for brown bear (Ursus arctos) in the northeastern Carpathians. We compared spatial patterns and distributions of resistance values derived from those models, and locations and characteristics of potential movement corridors. Results. Brown bears preferred areas with high forest cover, close to forest edges, high topographic complexity, and with low human pressure in both habitat and movement models. However, resistance surfaces derived from the habitat models based on predictors measured at broad and medium scales tended to underestimate connectivity, as they predicted substantially higher resistance values for most of the study area, including corridors. Conclusions. Our findings highlighted that connectivity assessments should be based on movement information if available, rather than generic habitat models. However, the parameterization of movement models is important, because the type of movement events considered, and the sampling method of environmental covariates can greatly affect connectivity assessments, and hence the predicted corridors
- …