58 research outputs found
Cosmology and Astrophysics from Relaxed Galaxy Clusters II: Cosmological Constraints
We present cosmological constraints from measurements of the gas mass
fraction, , for massive, dynamically relaxed galaxy clusters. Our data
set consists of Chandra observations of 40 such clusters, identified in a
comprehensive search of the Chandra archive, as well as high-quality weak
gravitational lensing data for a subset of these clusters. Incorporating a
robust gravitational lensing calibration of the X-ray mass estimates, and
restricting our measurements to the most self-similar and accurately measured
regions of clusters, significantly reduces systematic uncertainties compared to
previous work. Our data for the first time constrain the intrinsic scatter in
, % in a spherical shell at radii 0.8-1.2 ,
consistent with the expected variation in gas depletion and non-thermal
pressure for relaxed clusters. From the lowest-redshift data in our sample we
obtain a constraint on a combination of the Hubble parameter and cosmic baryon
fraction, , that is insensitive to the
nature of dark energy. Combined with standard priors on and ,
this provides a tight constraint on the cosmic matter density,
, which is similarly insensitive to dark energy. Using
the entire cluster sample, extending to , we obtain consistent results for
and interesting constraints on dark energy:
for non-flat CDM models, and
for flat constant- models. Our results are both competitive
and consistent with those from recent CMB, SNIa and BAO data. We present
constraints on models of evolving dark energy from the combination of
data with these external data sets, and comment on the possibilities for
improved constraints using current and next-generation X-ray
observatories and lensing data. (Abridged)Comment: 25 pages, 14 figures, 8 tables. Accepted by MNRAS. Code and data can
be downloaded from http://www.slac.stanford.edu/~amantz/work/fgas14/ . v2:
minor fix to table 1, updated bibliograph
Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters
In light of the tension in cosmological constraints reported by the Planck
team between their SZ-selected cluster counts and Cosmic Microwave Background
(CMB) temperature anisotropies, we compare the Planck cluster mass estimates
with robust, weak-lensing mass measurements from the Weighing the Giants (WtG)
project. For the 22 clusters in common between the Planck cosmology sample and
WtG, we find an overall mass ratio of \left =
0.688 \pm 0.072. Extending the sample to clusters not used in the Planck
cosmology analysis yields a consistent value of from 38 clusters in common. Identifying the
weak-lensing masses as proxies for the true cluster mass (on average), these
ratios are lower than the default mass bias of 0.8 assumed in
the Planck cluster analysis. Adopting the WtG weak-lensing-based mass
calibration would substantially reduce the tension found between the Planck
cluster count cosmology results and those from CMB temperature anisotropies,
thereby dispensing of the need for "new physics" such as uncomfortably large
neutrino masses (in the context of the measured Planck temperature anisotropies
and other data). We also find modest evidence (at 95 per cent confidence) for a
mass dependence of the calibration ratio and discuss its potential origin in
light of systematic uncertainties in the temperature calibration of the X-ray
measurements used to calibrate the Planck cluster masses. Our results exemplify
the critical role that robust absolute mass calibration plays in cluster
cosmology, and the invaluable role of accurate weak-lensing mass measurements
in this regard.Comment: 5 pages, 2 figure
Effect of lipid-lowering medications in patients with coronary artery bypass grafting surgery outcomes
Background: Increased life expectancy and improved medical technology allow increasing numbers of elderly patients to undergo cardiac surgery. Elderly patients may be at greater risk of postoperative morbidity and mortality. Complications can lead to worsened quality of life, shortened life expectancy and higher healthcare costs. Reducing perioperative complications, especially severe adverse events, is key to improving outcomes in patients undergoing cardiac surgery. The objective of this study is to determine whether perioperative lipid-lowering medication use is associated with a reduced risk of complications and mortality after coronary artery bypass grafting (CABG) with cardiopulmonary bypass (CPB).
Methods: After IRB approval, we reviewed charts of 9,518 patients who underwent cardiac surgery with CPB at three medical centers between July 2001 and June 2015. The relationship between perioperative lipid-lowering treatment and postoperative outcome was investigated. 3,988 patients who underwent CABG met inclusion criteria and were analyzed. Patients were divided into lipid-lowering or non-lipid-lowering treatment groups.
Results: A total of 3,988 patients were included in the final analysis. Compared to the patients without lipid-lowering medications, the patients with lipid-lowering medications had lower postoperative neurologic complications and overall mortality (P \u3c 0.05). Propensity weighted risk-adjustment showed that lipid-lowering medication reduced in-hospital total complications (odds ratio (OR) = 0.856; 95% CI 0.781-0.938; P \u3c 0.001); all neurologic complications (OR = 0.572; 95% CI 0.441-0.739; P \u3c 0.001) including stroke (OR = 0.481; 95% CI 0.349-0.654; P \u3c 0.001); in-hospital mortality (OR = 0.616; 95% CI 0.432-0.869; P = 0.006; P \u3c 0.001); and overall mortality (OR = 0.723; 95% CI 0.634-0.824; P \u3c 0.001). In addition, the results indicated postoperative lipid-lowering medication use was associated with improved long-term survival in this patient population.
Conclusions: Perioperative lipid-lowering medication use was associated with significantly reduced postoperative adverse events and improved overall outcome in elderly patients undergoing CABG surgery with CPB
Deep \u3cem\u3eChandra\u3c/em\u3e, \u3cem\u3eHST\u3c/em\u3e-Cos, and MegaCam Observations of the Phoenix Cluster: Extreme Star Formation and AGN Feedback on Hundred Kiloparsec Scales
We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ~50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 x 109 M⊙), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M⊙ yr−1. We report a strong detection of O ᴠɪ λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (\u3e1000 M⊙ yr−1) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 x 1045 erg s−1. We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from quasar-mode to radio-mode, and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended ghost cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments
Weighing the Giants - I. Weak-lensing masses for 51 massive galaxy clusters: project overview, data analysis methods and cluster images
This is the first in a series of papers in which we measure accurate
weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at
redshifts 0.15<z<0.7, in order to calibrate X-ray and other mass proxies for
cosmological cluster experiments. The primary aim is to improve the absolute
mass calibration of cluster observables, currently the dominant systematic
uncertainty for cluster count experiments. Key elements of this work are the
rigorous quantification of systematic uncertainties, high-quality data
reduction and photometric calibration, and the "blind" nature of the analysis
to avoid confirmation bias. Our target clusters are drawn from RASS X-ray
catalogs, and provide a versatile calibration sample for many aspects of
cluster cosmology. We have acquired wide-field, high-quality imaging using the
Subaru and CFHT telescopes for all 51 clusters, in at least three bands per
cluster. For a subset of 27 clusters, we have data in at least five bands,
allowing accurate photo-z estimates of lensed galaxies. In this paper, we
describe the cluster sample and observations, and detail the processing of the
SuprimeCam data to yield high-quality images suitable for robust weak-lensing
shape measurements and precision photometry. For each cluster, we present
wide-field color optical images and maps of the weak-lensing mass distribution,
the optical light distribution, and the X-ray emission, providing insights into
the large-scale structure in which the clusters are embedded. We measure the
offsets between X-ray centroids and Brightest Cluster Galaxies in the clusters,
finding these to be small in general, with a median of 20kpc. For offsets
<100kpc, weak-lensing mass measurements centered on the BCGs agree well with
values determined relative to the X-ray centroids; miscentering is therefore
not a significant source of systematic uncertainty for our mass measurements.
[abridged]Comment: 26 pages, 19 figures (Appendix C not included). Accepted after minor
revisio
New constraints on f(R) gravity from clusters of galaxies
The abundance of massive galaxy clusters is a powerful probe of departures
from General Relativity (GR) on cosmic scales. Despite current stringent
constraints placed by stellar and galactic tests, on larger scales alternative
theories of gravity such as can still work as effective theories. Here
we present constraints on two popular models of , Hu-Sawicki and
"designer", derived from a fully self-consistent analysis of current samples of
X-ray selected clusters and accounting for all the covariances between
cosmological and astrophysical parameters. Using cluster number counts in
combination with recent data from the cosmic microwave background (CMB) and the
CMB lensing potential generated by large scale structures, as well as with
other cosmological constraints on the background expansion history and its mean
matter density, we obtain the upper bounds and
at the 95.4 per cent confidence level, for the Hu-Sawicki
(with ) and designer models, respectively. The robustness of our results
derives from high quality cluster growth data for the most massive clusters
known out to redshifts , a tight control of systematic
uncertainties including an accurate and precise mass calibration from weak
gravitational lensing data, and the use of the full shape of the halo mass
function over the mass range of our data.Comment: 11 pages, 1 Table, 3 figures, matches published version on PR
Accounting for the mortality benefit of drug-eluting stents in percutaneous coronary intervention: a comparison of methods in a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>Drug-eluting stents (DES) reduce rates of restenosis compared with bare metal stents (BMS). A number of observational studies have also found lower rates of mortality and non-fatal myocardial infarction with DES compared with BMS, findings not observed in randomized clinical trials. In order to explore reasons for this discrepancy, we compared outcomes after percutaneous coronary intervention (PCI) with DES or BMS by multiple statistical methods.</p> <p>Methods</p> <p>We compared short-term rates of all-cause mortality and myocardial infarction for patients undergoing PCI with DES or BMS using propensity-score adjustment, propensity-score matching, and a stent-era comparison in a large, integrated health system between 1998 and 2007. For the propensity-score adjustment and stent era comparisons, we used multivariable logistic regression to assess the association of stent type with outcomes. We used McNemar's Chi-square test to compare outcomes for propensity-score matching.</p> <p>Results</p> <p>Between 1998 and 2007, 35,438 PCIs with stenting were performed among health plan members (53.9% DES and 46.1% BMS). After propensity-score adjustment, DES was associated with significantly lower rates of death at 30 days (OR 0.49, 95% CI 0.39 - 0.63, <it>P </it>< 0.001) and one year (OR 0.58, 95% CI 0.49 - 0.68, <it>P </it>< 0.001), and a lower rate of myocardial infarction at one year (OR 0.72, 95% CI 0.59 - 0.87, <it>P </it>< 0.001). Thirty day and one year mortality were also lower with DES after propensity-score matching. However, a stent era comparison, which eliminates potential confounding by indication, showed no difference in death or myocardial infarction for DES and BMS, similar to results from randomized trials.</p> <p>Conclusions</p> <p>Although propensity-score methods suggested a mortality benefit with DES, consistent with prior observational studies, a stent era comparison failed to support this conclusion. Unobserved factors influencing stent selection in observational studies likely account for the observed mortality benefit of DES not seen in randomized clinical trials.</p
Weighing the giants – IV. Cosmology and neutrino mass
We employ robust weak gravitational lensing measurements to improve
cosmological constraints from measurements of the galaxy cluster mass function
and its evolution, using X-ray selected clusters detected in the ROSAT All-Sky
Survey. Our lensing analysis constrains the absolute mass scale of such
clusters at the 8 per cent level, including both statistical and systematic
uncertainties. Combining it with the survey data and X-ray follow-up
observations, we find a tight constraint on a combination of the mean matter
density and late-time normalization of the matter power spectrum,
, with marginalized, one-dimensional
constraints of and . For these two
parameters, this represents a factor of two improvement in precision with
respect to previous work, primarily due to the reduced systematic uncertainty
in the absolute mass calibration provided by the lensing analysis. Our new
results are in good agreement with constraints from cosmic microwave background
(CMB) data, both WMAP and Planck (plus WMAP polarization), under the assumption
of a flat CDM cosmology with minimal neutrino mass. Consequently, we
find no evidence for non-minimal neutrino mass from the combination of cluster
data with CMB, supernova and baryon acoustic oscillation measurements,
regardless of which all-sky CMB data set is used (and independent of the recent
claimed detection of B-modes on degree scales). We also present improved
constraints on models of dark energy (both constant and evolving),
modifications of gravity, and primordial non-Gaussianity. Assuming flatness,
the constraints for a constant dark energy equation of state from the cluster
data alone are at the 15 per cent level, improving to per cent when
the cluster data are combined with other leading probes.Comment: 24 pages, 10 figures, 5 tables. v3: typo in table A1 correcte
- …