656 research outputs found
Adaptive multibeam antennas for spacelab. Phase A: Feasibility study
The feasibility was studied of using adaptive multibeam multi-frequency antennas on the spacelab, and to define the experiment configuration and program plan needed for a demonstration to prove the concept. Three applications missions were selected, and requirements were defined for an L band communications experiment, an L band radiometer experiment, and a Ku band communications experiment. Reflector, passive lens, and phased array antenna systems were considered, and the Adaptive Multibeam Phased Array (AMPA) was chosen. Array configuration and beamforming network tradeoffs resulted in a single 3m x 3m L band array with 576 elements for high radiometer beam efficiency. Separate 0.4m x 0.4 m arrays are used to transmit and receive at Ku band with either 576 elements or thinned apertures. Each array has two independently steerable 5 deg beams, which are adaptively controlled
The fractional Schr\"{o}dinger operator and Toeplitz matrices
Confining a quantum particle in a compact subinterval of the real line with
Dirichlet boundary conditions, we identify the connection of the
one-dimensional fractional Schr\"odinger operator with the truncated Toeplitz
matrices. We determine the asymptotic behaviour of the product of eigenvalues
for the -stable symmetric laws by employing the Szeg\"o's strong limit
theorem. The results of the present work can be applied to a recently proposed
model for a particle hopping on a bounded interval in one dimension whose
hopping probability is given a discrete representation of the fractional
Laplacian.Comment: 10 pages, 2 figure
L\'evy-Schr\"odinger wave packets
We analyze the time--dependent solutions of the pseudo--differential
L\'evy--Schr\"odinger wave equation in the free case, and we compare them with
the associated L\'evy processes. We list the principal laws used to describe
the time evolutions of both the L\'evy process densities, and the
L\'evy--Schr\"odinger wave packets. To have self--adjoint generators and
unitary evolutions we will consider only absolutely continuous, infinitely
divisible L\'evy noises with laws symmetric under change of sign of the
independent variable. We then show several examples of the characteristic
behavior of the L\'evy--Schr\"odinger wave packets, and in particular of the
bi-modality arising in their evolutions: a feature at variance with the typical
diffusive uni--modality of both the L\'evy process densities, and the usual
Schr\"odinger wave functions.Comment: 41 pages, 13 figures; paper substantially shortened, while keeping
intact examples and results; changed format from "report" to "article";
eliminated Appendices B, C, F (old names); shifted Chapters 4 and 5 (old
numbers) from text to Appendices C, D (new names); introduced connection
between Relativistic q.m. laws and Generalized Hyperbolic law
Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise
The paper is concerned with spatial and time regularity of solutions to
linear stochastic evolution equation perturbed by L\'evy white noise "obtained
by subordination of a Gaussian white noise". Sufficient conditions for spatial
continuity are derived. It is also shown that solutions do not have in general
\cadlag modifications. General results are applied to equations with fractional
Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already
been publishe
Mixtures in non stable Levy processes
We analyze the Levy processes produced by means of two interconnected classes
of non stable, infinitely divisible distribution: the Variance Gamma and the
Student laws. While the Variance Gamma family is closed under convolution, the
Student one is not: this makes its time evolution more complicated. We prove
that -- at least for one particular type of Student processes suggested by
recent empirical results, and for integral times -- the distribution of the
process is a mixture of other types of Student distributions, randomized by
means of a new probability distribution. The mixture is such that along the
time the asymptotic behavior of the probability density functions always
coincide with that of the generating Student law. We put forward the conjecture
that this can be a general feature of the Student processes. We finally analyze
the Ornstein--Uhlenbeck process driven by our Levy noises and show a few
simulation of it.Comment: 28 pages, 3 figures, to be published in J. Phys. A: Math. Ge
On the Computational Complexity of Measuring Global Stability of Banking Networks
Threats on the stability of a financial system may severely affect the
functioning of the entire economy, and thus considerable emphasis is placed on
the analyzing the cause and effect of such threats. The financial crisis in the
current and past decade has shown that one important cause of instability in
global markets is the so-called financial contagion, namely the spreading of
instabilities or failures of individual components of the network to other,
perhaps healthier, components. This leads to a natural question of whether the
regulatory authorities could have predicted and perhaps mitigated the current
economic crisis by effective computations of some stability measure of the
banking networks. Motivated by such observations, we consider the problem of
defining and evaluating stabilities of both homogeneous and heterogeneous
banking networks against propagation of synchronous idiosyncratic shocks given
to a subset of banks. We formalize the homogeneous banking network model of
Nier et al. and its corresponding heterogeneous version, formalize the
synchronous shock propagation procedures, define two appropriate stability
measures and investigate the computational complexities of evaluating these
measures for various network topologies and parameters of interest. Our results
and proofs also shed some light on the properties of topologies and parameters
of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic
Stochastic Reaction-diffusion Equations Driven by Jump Processes
We establish the existence of weak martingale solutions to a class of second
order parabolic stochastic partial differential equations. The equations are
driven by multiplicative jump type noise, with a non-Lipschitz multiplicative
functional. The drift in the equations contains a dissipative nonlinearity of
polynomial growth.Comment: See journal reference for teh final published versio
- …