1,279 research outputs found
Postmodern Technicolor
Using new insights into strongly coupled gauge theories arising from analytic
calculations and lattice simulations, we explore a framework for technicolor
model building that relies on a non-trivial infrared fixed point, and an
essential role for QCD. Interestingly, the models lead to a simple relation
between the electroweak scale and the QCD confinement scale, and to the
possible existence of exotic leptoquarks with masses of several hundred GeV.Comment: LaTeX, 13 pages, version published in PR
Universal Extra Dimensions and the Higgs Boson Mass
We study the combined constraints on the compactification scale 1/R and the
Higgs mass m_H in the standard model with one or two universal extra
dimensions. Focusing on precision measurements and employing the
Peskin-Takeuchi S and T parameters, we analyze the allowed region in the (m_H,
1/R) parameter space consistent with current experiments. For this purpose, we
calculate complete one-loop KK mode contributions to S, T, and U, and also
estimate the contributions from physics above the cutoff of the
higher-dimensional standard model. A compactification scale 1/R as low as 250
GeV and significantly extended regions of m_H are found to be consistent with
current precision data.Comment: 21 pages, Latex, 6 eps figures, an error in calculations was
corrected and results of analysis changed accordingly, references adde
The Zero Temperature Chiral Phase Transition in SU(N) Gauge Theories
We investigate the zero temperature chiral phase transition in an SU(N) gauge
theory as the number of fermions is varied. We argue that there exists a
critical number of fermions , above which there is no chiral symmetry
breaking or confinement, and below which both chiral symmetry breaking and
confinement set in. We estimate and discuss the nature of the phase
transition.Comment: 13 pages, LaTeX, version published in PR
2+1 Dimensional QED and a Novel Phase Transition
We investigate the chiral phase transition in 2+1 dimensional QED. Previous
gap equation and lattice Monte-Carlo studies of symmetry breaking have found
that symmetry breaking ceases to occur when the number of fermion flavors
exceeds a critical value. Here we focus on the order of the transition. We find
that there are no light scalar degrees of freedom present as the critical
number of flavors is approached from above (in the symmetric phase). Thus the
phase transition is not second order, rendering irrelevant the renormalization
group arguments for a fluctuation induced transition. However, the order
parameter vanishes continuously in the broken phase, so this transition is also
unlike a conventional first order phase transition.Comment: 11 pages, Late
The Phase Structure of an SU(N) Gauge Theory with N_f Flavors
We investigate the chiral phase transition in SU(N) gauge theories as the
number of quark flavors, , is varied. We argue that the transition takes
place at a large enough value of so that it is governed by the infrared
fixed point of the function. We study the nature of the phase
transition analytically and numerically, and discuss the spectrum of the theory
as the critical value of is approached in both the symmetric and broken
phases. Since the transition is governed by a conformal fixed point, there are
no light excitations on the symmetric side. We extend previous work to include
higher order effects by developing a renormalization group estimate of the
critical coupling.Comment: 34 pages, 1 figure. More references adde
Curvature perturbations from dimensional decoupling
The scalar modes of the geometry induced by dimensional decoupling are
investigated. In the context of the low energy string effective action,
solutions can be found where the spatial part of the background geometry is the
direct product of two maximally symmetric Euclidean manifolds whose related
scale factors evolve at a dual rate so that the expanding dimensions first
accelerate and then decelerate while the internal dimensions always contract.
After introducing the perturbative treatment of the inhomogeneities, a class of
five-dimensional geometries is discussed in detail. Quasi-normal modes of the
system are derived and the numerical solution for the evolution of the metric
inhomogeneities shows that the fluctuations of the internal dimensions provide
a term that can be interpreted, in analogy with the well-known four-dimensional
situation, as a non-adiabatic pressure density variation. Implications of this
result are discussed with particular attention to string cosmological
scenarios.Comment: 25 pages, 3 figure
The Electroweak Chiral Lagrangian and CP-Violating Effects in Technicolor Theories
We estimate the CP-violating and anomalous form factors,
arising from CP-violating interactions in extended technicolor theories, and
discuss their future experimental detectability. The electric dipole moment of
the boson is found to be as large as {\cal O}(10^{-21}) \; \mbox{e cm}.
We connect the CP-odd and couplings to the corresponding
CP-violating electroweak chiral lagrangian operators. The electric dipole
moments of the neutron and the electron in technicolor theories are estimated
to be as large as {\cal O}(10^{-26}) \; \mbox{e cm} and {\cal O}(10^{-29})
\; \mbox{e cm} respectively. We also suggest the potential to observe large
CP-violating technicolor effects in the decay .Comment: 34 pages, YCTP-P9-94, LaTex. (minor changes in wording and notation,
the figures are appended at the end as one postscript file
Extended Technicolor Models with Two ETC Groups
We construct extended technicolor (ETC) models that can produce the large
splitting between the masses of the and quarks without necessarily
excessive contributions to the parameter or to neutral flavor-changing
processes. These models make use of two different ETC gauge groups, such that
left- and right-handed components of charge quarks transform under the
same ETC group, while left- and right-handed components of charge -1/3 quarks
and charged leptons transform under different ETC groups. The models thereby
suppress the masses and relative to , and and
relative to because the masses of the quarks and charged leptons
require mixing between the two ETC groups, while the masses of the
quarks do not. A related source of the differences between these mass
splittings is the effect of the two hierarchies of breaking scales of the two
ETC groups. We analyze a particular model of this type in some detail. Although
we find that this model tends to suppress the masses of the first two
generations of down-type quarks and charged leptons too much, it gives useful
insights into the properties of theories with more than one ETC group.Comment: 14 pages, 4 figure
Implications of Dynamical Generation of Standard-Model Fermion Masses
We point out that if quark and lepton masses arise dynamically, then in a
wide class of theories the corresponding running masses exhibit
the power-law decay for Euclidean momenta
, where is a fermion of generation , and
is the maximal scale relevant for the origin of . We estimate
resultant changes in precision electroweak quantities and compare with current
data. It is found that this data allows the presence of such corrections. We
also note that this power-law decay renders primitively divergent fermion mass
corrections finite.Comment: 4 pages, late
Limit on the fermion masses in technicolor models
Recently it has been pointed out that no limits can be put on the scale of
fermion mass generation in technicolor models, because the relation
between the fermion masses and depends on the dimensionality of the
interaction responsible for generating the fermion mass. Depending on this
dimensionality it may happens that does not depend on at all. We show
that exactly in this case may reach its largest value, which is almost
saturated by the top quark mass. We make few comments on the question of how
large can be a dynamically generated fermion mass.Comment: 5 pages, 1 figure, RevTeX
- …