30 research outputs found

    A novel lytic phage potentially effective for phage therapy against Burkholderia pseudomallei in the tropics.

    Get PDF
    BACKGROUND: Burkholderia pseudomallei is a tropical pathogen that causes melioidosis. Its intrinsic drug-resistance is a leading cause of treatment failure, and the few available antibiotics require prolonged use to be effective. This study aimed to assess the clinical potential of B. pseudomallei phages isolated from Hainan, China. METHODS: Burkholderia pseudomallei strain (HNBP001) was used as the isolation host, and phages were recovered from domestic environmental sources, which were submitted to the host range determination, lytic property assays, and stability tests. The best candidate was examined via the transmission electron microscope for classification. With its genome sequenced and analyzed, its protective efficacy against B. pseudomallei infection in A549 cells and Caenorhabditis elegans was evaluated, in which cell viability and survival rates were compared using the one-way ANOVA method and the log-rank test. RESULTS: A phage able to lyse 24/25 clinical isolates was recovered. It was classified in the Podoviridae family and was found to be amenable to propagation. Under the optimal multiplicity of infection (MOI) of 0.1, an eclipse period of around 20 min and a high titer (1012 PFU/ml) produced within 1 h were demonstrated. This phage was found stabile at a wide range of temperatures (24, 37, 40, 50, and 60 °C) and pH values (3-12). After being designated as vB_BpP_HN01, it was fully sequenced, and the 71,398 bp linear genome, containing 93 open reading frames and a tRNA-Asn, displayed a low sequence similarity with known viruses. Additionally, protective effects of applications of vB_BpP_HN01 (MOI = 0.1 and MOI = 1) alone or in combination with antibiotics were found to improve viability of infected cells (70.6 ± 6.8%, 85.8 ± 5.7%, 91.9 ± 1.8%, and 96.8 ± 1.8%, respectively). A significantly reduced mortality (10%) and a decreased pathogen load were demonstrated in infected C. elegans following the addition of this phage. CONCLUSIONS: As the first B. pseudomallei phage was isolated in Hainan, China, phage vB_BpP_HN01 was characterized by promising lytic property, stability, and efficiency of bacterial elimination during the in vitro/vivo experiments. Therefore, we can conclude that it is a potential alternative agent for combating melioidosis

    Strategy for applying CRISPR/Cas9 gene editing technology in neuroscience

    No full text

    Arginine Administration Reduces Hydrogen Peroxide in Ischemia-reperfusion Endothelium of Rats.

    No full text

    Rational Construction of a Triple-Phase Reaction Zone Using CuO-Based Heterostructure Nanoarrays for Enhanced Water Oxidation Reaction

    No full text
    The development of high-efficiency oxygen evolution reaction (OER) electrocatalysts for the production and conversion of clean energy is paramount yet also full of challenges. Herein, we proposed a simple and universal method to precisely fabricate the hierarchically structured CuO/TMOs loaded on Cu foil (CuO/TMOs/CF) (TMO represents Mn3O4, NiO, CoO, and CuO) nanorod-array electrodes as a highly active and stable OER electrocatalyst, employing Cu(OH)2/CF as a self-sacrificing template by the subsequent H2O2-induced chemical deposition (HiCD) and pyrolysis process. Taking CuO/Mn3O4/CF as an example, we systematically investigated its structure–performance relationship via experimental and theoretical explorations. The enhanced OER activity can be ascribed to the rational design of the nanoarray with multiple synergistic effects of abundant active sites, excellent electronic conductivity of the metallic Cu foil substrate, strong interface charge transfer, and quasi-superhydrophilic/superaerophobic property. Consequently, the optimal CuO/Mn3O4/CF presents an overpotential of 293 mV to achieve a current density of 20 mA cm–2 in 1.0 M KOH media, comparable to that of commercial RuO2 (282 mV), delivering excellent durability by the electrolysis of water at a potential of around 1.60 V [vs reversible hydrogen electrode (RHE)] without evident degeneration. This work might offer a feasible scheme for developing a hybrid nanoarray OER electrocatalyst via regulating electron transportation and mass transfer.</p

    Gesture Recognition Based on a Convolutional Neural Network–Bidirectional Long Short-Term Memory Network for a Wearable Wrist Sensor with Multi-Walled Carbon Nanotube/Cotton Fabric Material

    No full text
    Flexible pressure sensors play a crucial role in detecting human motion and facilitating human–computer interaction. In this paper, a type of flexible pressure sensor unit with high sensitivity (2.242 kPa−1), fast response time (80 ms), and remarkable stability (1000 cycles) is proposed and fabricated by the multi-walled carbon nanotube (MWCNT)/cotton fabric (CF) material based on a dip-coating method. Six flexible pressure sensor units are integrated into a flexible wristband and made into a wearable and portable wrist sensor with favorable stability. Then, seven wrist gestures (Gesture Group #1), five letter gestures (Gesture Group #2), and eight sign language gestures (Gesture Group #3) are performed by wearing the wrist sensor, and the corresponding time sequence signals of the three gesture groups (#1, #2, and #3) from the wrist sensor are collected, respectively. To efficiently recognize different gestures from the three groups detected by the wrist sensor, a fusion network model combined with a convolutional neural network (CNN) and the bidirectional long short-term memory (BiLSTM) neural network, named CNN-BiLSTM, which has strong robustness and generalization ability, is constructed. The three types of Gesture Groups were recognized based on the CNN-BiLSTM model with accuracies of 99.40%, 95.00%, and 98.44%. Twenty gestures (merged by Group #1, #2, and #3) were recognized with an accuracy of 96.88% to validate the applicability of the wrist sensor based on this model for gesture recognition. The experimental results denote that the CNN-BiLSTM model has very efficient performance in recognizing different gestures collected from the flexible wrist sensor

    The transcription factor c-Myc suppresses MiR-23b and MiR-27b transcription during fetal distress and increases the sensitivity of neurons to hypoxia-induced apoptosis.

    No full text
    Previous studies reported that the expression of miR-23b-27b cluster was downregulated in embryonic brain cortices during hypoxia-induced neuronal apoptosis. However, the mechanism underlying this downregulation is not completely understood. Here, we report that the transcription factor c-Myc plays an important role in regulating the expression of miR-23b-27b cluster during hypoxia. First, the c-Myc protein level was significantly elevated in embryonic brain cortices in a mouse model of fetal distress. Second, forced overexpression or knockdown of c-Myc could suppress or increase the expression of miR-23b-27b cluster polynucleotides. Third, we identified 2 conserved c-Myc binding sites (E-boxes) in the enhancer and promoter regions of miR-23b-27b cluster in the mouse genome. Finally, we showed that elevated c-Myc expression led to an increase in the Apaf-1 level by suppressing miR-23b-27b cluster expression and that this enhanced neuronal sensitivity to apoptosis. In summary, our study demonstrates that c-Myc may suppress the expression of the miR-23b-27b cluster, resulting in additional neuronal apoptosis during hypoxia

    Utilization of local rich banana straw bioresource to solve Cd2+ pollution problem in major non-ferrous metal production areas of Southwest China

    No full text
    The development of non-ferrous metal resources has caused serious cadmium pollution problem in Southwest China. Meanwhile, these areas are rich in bioresources like banana straw. With the assistance of microwave radiation, biomass may accomplish thermal breakdown and carbonization processes efficiently and quickly. In this work, banana straw was used as bioresource to synthesize biochar by microwave pyrolysis for the removal of Cd2+ from aqueous solution. The experiment result showed that the maximum Cd2+ adsorption capacity was 244.43 mg/g. The Elovich kinetic model and the Langmuir isotherm could well fit the adsorption process of Cd2+. Furthermore, the adsorption of Cd2+ by banana straw biochar is achieved through the synergistic effects of mineral precipitation, complexation with oxygen-containing functional groups (OFGs), ion exchange and Cd-π interaction, which accounted for the contribution of 86.57 %, 0.15 %, 3.73 % and 9.55 %, respectively. This study provides an innovative solution of cadmium pollution problem relying on local rich banana straw bioresource

    Manipulating Electrocatalytic Reaction and Ion Intercalation to Improve Aqueous Batteries

    No full text
    We report that electrocatalytic water decomposition can be leveraged to enhance the performance of aqueous batteries. Using the NaxFe[Fe(CN)6]ǁNaTi2(PO4)3 aqueous battery as a platform, we demonstrate that electrocatalytic water oxidation can serve as an electrochemical activation approach to achieving higher full cell capacity. <br /
    corecore