3 research outputs found
Martian dust storm impact on atmospheric H<sub>2</sub>O and D/H observed by ExoMars Trace Gas Orbiter
Global dust storms on Mars are rare but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere, primarily owing to solar heating of the dust. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes, as well as a decrease in the water column at low latitudes. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere
No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations
The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today. A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations. These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere, which-given methane's lifetime of several centuries-predicts an even, well mixed distribution of methane. Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections. We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally
Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter
International audienceThe atmospheric chemistry suite (ACS) package is a part of the Russian contribution to the ExoMars ESA-Roscosmos mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The near-infrared (NIR) channel is a versatile spectrometer for the spectral range of 0.7-1.6 μm with a resolving power of ∼20,000. The instrument employs the principle of an echelle spectrometer with an acousto-optical tunable filter (AOTF) as a preselector. NIR will be operated in nadir, in solar occultations, and possibly on the limb. Scientific targets of NIR are the measurements of water vapor, aerosols, and dayside or nightside airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50,000. MIR is dedicated to sensitive measurements of trace gases. The thermal infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm−1. TIRVIM is primarily dedicated to the monitoring of atmospheric temperatures and aerosol states in nadir. The present paper describes the concept of the instrument, and in more detail, the optical design and the expected parameters of its three parts channel by channel