26 research outputs found

    Modeling, Simulation, and Control of Steam Generation Processes

    Get PDF
    This chapter describes a modeling methodology to provide the main characteristics of a simulation tool to analyze the steady state, transient operation, and control of steam generation processes, such as heat recovery steam generators (HRSG). The methodology includes a modular strategy that considers individual heat exchangers such as: economizers, evaporators, superheaters, drum tanks, and control systems. The modular strategy consists of the development of a numerical modeling tool that integrates sub-models based upon first principle equations of mass, energy, and momentum balance. The main heat transfer mechanisms characterize the dynamics of steam generation systems during normal and abnormal operations, which include the response of key process variables such as vapor pressure, temperature, and mass flow rate. Other important variables are: gas temperature, fluid temperature, drum pressure, drum’s liquid level, and mass flow rate at each module. Those variables are usually analyzed with design predicted performance of real industrial equipment such as HRSG systems. Finally, two case studies of the application of the modeling strategy are provided to show the effectiveness and utility of the methodology

    Limit Cycle Analysis in a Class of Hybrid Systems

    Get PDF
    Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework

    Limit Cycle Analysis in a Class of Hybrid Systems

    No full text
    Hybrid systems are those that inherently combine discrete and continuous dynamics. This paper considers the hybrid system model to be an extension of the discrete automata associating a continuous evolution with each discrete state. This model is called the hybrid automaton. In this work, we achieve a mathematical formulation of the steady state and we show a way to obtain the initial conditions region to reach a specific limit cycle for a class of uncoupled and coupled continuous-linear hybrid systems. The continuous-linear term is used in the sense of the system theory and, in this sense, continuous-linear hybrid automata will be defined. Thus, some properties and theorems that govern the hybrid automata dynamic behavior to evaluate a limit cycle existence have been established; this content is explained under a theoretical framework. © 2016 Antonio Favela-Contreras et al

    Model Predictive Control with a Relaxed Cost Function for Constrained Linear Systems

    No full text
    The Model Predictive Control technique is widely used for optimizing the performance of constrained multi-input multi-output processes. However, due to its mathematical complexity and heavy computation effort, it is mainly suitable in processes with slow dynamics. Based on the Exact Penalization Theorem, this paper presents a discrete-time state-space Model Predictive Control strategy with a relaxed performance index, where the constraints are implicitly defined in the weighting matrices, computed at each sampling time. The performance validation for the Model Predictive Control strategy with the proposed relaxed cost function uses the simulation of a tape transport system and a jet transport aircraft during cruise flight. Without affecting the tracking performance, numerical results show that the execution time is notably decreased compared with two well-known discrete-time state-space Model Predictive Control strategies. This makes the proposed Model Predictive Control mainly suitable for constrained multivariable processes with fast dynamics

    Energy-Efficient Wireless Communication Strategy for Precision Agriculture Irrigation Control

    No full text
    In smart farming, precision agriculture irrigation is essential to reduce water consumption and produce higher crop yields. Closed-loop irrigation based on soil moisture measurements has demonstrated the capability to achieve a considerable amount of water savings while growing healthy crops. Automated irrigation systems are typically implemented over wireless sensor networks, where the sensing devices are battery-powered, and thus they have to manage energy constraints by implementing efficient communication schemas. Self-triggered control is an aperiodic sampling strategy capable of reducing the number of networked messages compared to traditional periodical sampling. In this paper, we propose an energy-efficient communication strategy for closed-loop control irrigation, implemented over a wireless sensor network, where event-driven soil moisture measurements are conducted by the sensing devices only when needed. Thereby, the self-triggered algorithm estimates the occurrence of the next sampling period based on the process dynamics. The proposed strategy was evaluated in a pecan crop field and compared with periodical sampling implementations. The experimental results show that the proposed adaptive sampling rate technique decreased the number of communication messages more than 85% and reduced power consumption up to 20%, while still accomplishing the system control objectives in terms of the irrigation efficiency and water consumption

    An MPC-LQR-LPV Controller with Quadratic Stability Conditions for a Nonlinear Half-Car Active Suspension System with Electro-Hydraulic Actuators

    No full text
    The active suspension system of a vehicle manipulated using electro-hydraulic actuators is a challenging nonlinear control problem. In this research work, a novel Linear Parameter Varying (LPV) State-Space (SS) model with a fictional input is proposed to represent a nonlinear half-car active suspension system. Four different scheduling parameters are used to embed the nonlinearities of both the suspension and the electro hydraulic actuators to represent its nonlinear behavior. A recursive least squares (RLS) algorithm is used to predict the future behavior of the scheduling parameters along the prediction horizon. A Model Predictive Control-Linear Quadratic Regulator (MPC-LQR) is implemented as the control strategy and, to ensure stability, Quadratic Stability conditions are imposed as Linear Matrix Inequalities (LMI) constraints. Furthermore, the inclusion of attraction sets to overcome the conservative performance imposed by the Quadratic Stability conditions is included, as well as a terminal set were the switching between the MPC and the LQR controller is made. Simulations results for the half-car active suspension model over a typical road disturbance are tested to show the effectiveness of the proposed MPC-LQR-LPV controller with quadratic stability conditions in terms of comfort and road-holding

    An MPC-LQR-LPV Controller with Quadratic Stability Conditions for a Nonlinear Half-Car Active Suspension System with Electro-Hydraulic Actuators

    No full text
    The active suspension system of a vehicle manipulated using electro-hydraulic actuators is a challenging nonlinear control problem. In this research work, a novel Linear Parameter Varying (LPV) State-Space (SS) model with a fictional input is proposed to represent a nonlinear half-car active suspension system. Four different scheduling parameters are used to embed the nonlinearities of both the suspension and the electro hydraulic actuators to represent its nonlinear behavior. A recursive least squares (RLS) algorithm is used to predict the future behavior of the scheduling parameters along the prediction horizon. A Model Predictive Control-Linear Quadratic Regulator (MPC-LQR) is implemented as the control strategy and, to ensure stability, Quadratic Stability conditions are imposed as Linear Matrix Inequalities (LMI) constraints. Furthermore, the inclusion of attraction sets to overcome the conservative performance imposed by the Quadratic Stability conditions is included, as well as a terminal set were the switching between the MPC and the LQR controller is made. Simulations results for the half-car active suspension model over a typical road disturbance are tested to show the effectiveness of the proposed MPC-LQR-LPV controller with quadratic stability conditions in terms of comfort and road-holding

    A Differential Flatness-Based Model Predictive Control Strategy for a Nonlinear Quarter-Car Active Suspension System

    No full text
    Controlling an automotive suspension system using an actuator is a complex nonlinear problem that requires both fast and precise solutions in order to achieve optimal performance. In this work, the nonlinear model of a quarter-car active suspension is expressed in terms of a flat output and its derivatives in order to embed the nonlinearities of the system in the flat output. Afterward, a Model Predictive Controller based on the differential flatness derivation (MPC-DF) of the quarter-car is proposed in order to achieve optimal control performance in both passenger comfort and road holding without diminishing the lifespan of the wheel. This formulation results in a linear optimization problem while maintaining the nonlinear behavior of the active suspension system. Afterward, the optimization problem is solved by means of Quadratic Programming (QP), enabling real-time implementation. Simulation results are presented using a realistic road disturbance to show the effectiveness of the proposed control strategy

    Novel Strategy of Adaptive Predictive Control Based on a MIMO-ARX Model

    No full text
    Many industrial processes include MIMO (multiple-input, multiple-output) systems that are difficult to control by standard commercial controllers. This paper describes a MIMO case of a class of SISO-APC (single-input, single-output adaptive predictive controller) based upon an ARX (autoregressive with exogenous variable) model. This class of SISO-APC based on ARX models has been successfully and extensively used in many industrial applications. This approach aims to minimize the barriers between the theory of predictive adaptive control and its application in the industrial environment. The proposed MIMO-APC (MIMO adaptive predictive controller) performance is validated with two simulated processes: a quadrotor drone and the quadruple tank process. In the first experiment the proposed MIMO APC shows ISE-IAE-ITAE performance indices improvements of up to 25%, 25.4% and 38.9%, respectively. For the quadruple tank process the water levels in the lower tanks follow closely the set points, with the exception of a 13% overshoot in tank 1 for the minimum phase behavior response. The controller responses show significant performance improvements when compared with previously published MIMO control strategies
    corecore