2 research outputs found

    Effects of imipramine on cancer patients over-expressing Fascin1; description of the HITCLIF clinical trial

    Get PDF
    BackgroundTumor invasion and metastasis are responsible for the majority of cancer-related deaths. The identification of molecules involved in these processes is crucial to design effective treatments that can halt the progression of cancer. To spread and metastasize, tumor cells must restructure their cytoskeleton and emit protrusions. A key molecule in this process of creating these invading structures is Fascin1, the main protein involved in the formation of actin cytoskeleton bundles and a consistent marker of bad prognosis in several types of cancer. Recent studies have shown that imipramine, an FDA- and EMA-approved antidepressant, can block Fascin1and prevent the formation of actin bundles, making it a promising candidate for the treatment of Fascin1-expressing cancers. As a result, a clinical trial will be conducted to assess the efficacy of imipramine being the first experimental clinical study selecting patients based on Fascin1 expression.MethodsThe HITCLIF trial is a multicenter, double-blind, placebo-controlled, randomized and non-commercial phase II clinical trial conducted in parallel groups to evaluate the effectiveness of the tricyclic antidepressant imipramine as anti-invasive agent in the treatment of localized colon, rectal and triple negative breast cancer patients with overexpression of Fascin1. Eligible patients will be randomly assigned, in a 1:1 ratio, to receive imipramine or placebo. Patients will be stratified into 2 groups according to whether administration of imipramine is concomitant with neoadjuvant chemotherapy regimen. Group A will receive imipramine alone without neoadjuvant chemotherapy, while Group B will receive imipramine treatment along with the standard neoadjuvant chemotherapy regimen. The primary endpoint of the trial is the grade of alteration in the prognostic histopathological features at invasive margins (tumor budding, cytoplasmic pseudo-fragments, tumor growth pattern, and peritumoral lymphocytic infiltration).DiscussionFascin1 is an interesting therapeutical target as it plays a causative role in the invasion and metastasis of cancer cells. Moreover, its expression is virtually absent in normal epithelia but highly expressed in cancer with bad prognosis. In silico, in vitro and in vivo studies by our group have demonstrated that the antidepressant imipramine has Fascin1-dependant anti-invasive and anti-metastatic effects in colorectal cancer cells. Now we are recruiting patients in a clinical trial based on Fascin1 over-expression in which administration of imipramine will be carried out during the period between the diagnosis biopsy and surgical resection to explore the drug effects on tumor invasive front.Clinical trial registrationhttps:///www.clinicaltrialsregister.eu/ctr-search/trial/2021-001328-17/ES, identifier 2021-001328-17

    Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment

    No full text
    Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity
    corecore