58 research outputs found
Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems
This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the Non-Dominated Sorting Genetic Algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria
A new innovative cooling law for simulated annealing algorithms
The present paper proposes an original and innovative cooling law in the field of Simulated Annealing (SA) algorithms. Particularly, such a law is based on the evolution of different initial seeds on which the algorithm works in parallel. The efficiency control of the new proposal, executed on problems of different kind, shows that the convergence quickness by using such a new cooling law is considerably greater than that obtained by traditional laws. Furthermore, it is shown that the effectiveness of the SA algorithm arising from the proposed cooling law is independent of the problem type. This last feature reduces the number of parameters to be initially fixed, so simplifying the preliminary calibration process necessary to optimize the algorithm efficiency
Constrained consistency enforcement in AHP
Decision-making in the presence of intangible elements must be based on a robust, but subtle, balance between expert know-how and judgment consistency when eliciting that know-how. This balance is frequently achieved as a trade-off reached after a feedback process softens the tension frequently found between one force steadily pulling towards (full) consistency, and another force driven by expert feeling and opinion. The linearization method, developed by the authors in the framework of the analytic hierarchy process, is a pull-towards-consistency mechanism that shows the path from an inconsistent body of judgment elicited from an expert towards consistency, by suggesting optimal changes to the expert opinions. However, experts may be reluctant to alter some of their issued opinions, and may wish to impose constraints on the adjustments suggested by the consistency-enforcement mechanism. In this paper, using the classical Riesz representation theorem, the linearization method is accommodated to consider various types of constraints imposed by experts during the abovementioned feedback process
An Analytic Hierarchy Process for The Evaluation of Transport Policies to Reduce Climate Change Impacts
Transport is the sector with the fastest growth of greenhouse gases emissions, both in developed and in developing countries, leading to adverse climate change impacts. As the experts disagree on the occurrence of these impacts, by applying the analytic hierarchy process (AHP), we have faced the question on how to form transport policies when the experts have different opinions and beliefs. The opinions of experts have been investigated by a means of a survey questionnaire. The results show that tax schemes aiming at promoting environmental-friendly transport mode are the best policy. This incentives public and environmental-friendly transport modes, such as car sharing and car pooling
Machine Learning approach towards real time assessment of hand-arm vibration risk
In industry 4,0, the establishment of an interconnected environment where human operators cooperate with the machines offers the opportunity for substantially improving the ergonomics and safety conditions of the workplace. This topic is discussed in the paper referring to the vibration risk, which is a well-known cause of work-related pathologies. A wearable device has been developed to collect vibration data and to segment the signals obtained in time windows. A machine learning classifier is then proposed to recognize the worker’s activity and to evaluate the exposure to vibration risks. The experimental results demonstrate the feasibility and effectiveness of the methodology proposed
- …