28 research outputs found

    The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony.

    No full text
    A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for > or =6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria

    Molecular Identification of a Malaria Merozoite Surface Sheddase

    Get PDF
    Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface “sheddase,” but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase). We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite

    Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes.

    Get PDF
    The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known. We report that, just prior to egress, an essential serine protease called PfSUB1 is discharged from previously unrecognized parasite organelles (termed exonemes) into the parasitophorous vacuole space. There, PfSUB1 mediates the proteolytic maturation of at least two essential members of another enzyme family called SERA. Pharmacological blockade of PfSUB1 inhibits egress and ablates the invasive capacity of released merozoites. Our findings reveal the presence in the malarial parasitophorous vacuole of a regulated, PfSUB1-mediated proteolytic processing event required for release of viable parasites from the host erythrocyte

    Formation of the Food Vacuole in Plasmodium falciparum: A Potential Role for the 19 kDa Fragment of Merozoite Surface Protein 1 (MSP119)

    Get PDF
    Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) is synthesized during schizogony as a 195-kDa precursor that is processed into four fragments on the parasite surface. Following a second proteolytic cleavage during merozoite invasion of the red blood cell, most of the protein is shed from the surface except for the C-terminal 19-kDa fragment (MSP119), which is still attached to the merozoite via its GPI-anchor. We have examined the fate of MSP119 during the parasite's subsequent intracellular development using immunochemical analysis of metabolically labeled MSP119, fluorescence imaging, and immuno-electronmicroscopy. Our data show that MSP119 remains intact and persists to the end of the intracellular cycle. This protein is the first marker for the biogenesis of the food vacuole; it is rapidly endocytosed into small vacuoles in the ring stage, which coalesce to form the single food vacuole containing hemozoin, and persists into the discarded residual body. The food vacuole is marked by the presence of both MSP119 and the chloroquine resistance transporter (CRT) as components of the vacuolar membrane. Newly synthesized MSP1 is excluded from the vacuole. This behavior indicates that MSP119 does not simply follow a classical lysosome-like clearance pathway, instead, it may play a significant role in the biogenesis and function of the food vacuole throughout the intra-erythrocytic phase

    Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development.

    No full text
    During the assembly of Plasmodium falciparum merozoites within the schizont stage, the parasite synthesizes and positions three sets of secretory vesicles (rhoptries, micronemes and dense granules) that are active during red cell invasion. There are up to 40 micronemes per merozoite, shaped like long-necked bottles, about 160 nm long and 65 nm at their widest diameter. On their external surfaces, they bear bristle-like filaments, each 3-4 nm thick and 25 nm long. Micronemes are translocated from a single Golgi-like cisterna near the nucleus along a band of two or three subpellicular microtubules to the merozoite apex, where they dock with the rhoptry tips. Dense granules are also formed around the periphery of the Golgi cisternae but their distribution is unrelated to microtubules. Three polyclonal antibodies raised against the recombinant PfAMA-1 ectodomain sequence recognizing both the 83 kDa and processed 66 kDa molecules label the peripheries of translocating and mature micronemes but do not label rhoptries significantly at any stage of merozoite development within schizonts. This result confirms that PfAMA-1 is a micronemal protein, and indicates that within the microneme it is located near or inserted into this organelle's boundary membrane
    corecore