1 research outputs found
Efficient computation of the first passage time distribution of the generalized master equation by steady-state relaxation
The generalized master equation or the equivalent continuous time random walk
equations can be used to compute the macroscopic first passage time
distribution (FPTD) of a complex stochastic system from short-term microscopic
simulation data. The computation of the mean first passage time and additional
low-order FPTD moments can be simplified by directly relating the FPTD moment
generating function to the moments of the local FPTD matrix. This relationship
can be physically interpreted in terms of steady-state relaxation, an extension
of steady-state flow. Moreover, it is amenable to a statistical error analysis
that can be used to significantly increase computational efficiency. The
efficiency improvement can be extended to the FPTD itself by modelling it using
a Gamma distribution or rational function approximation to its Laplace
transform