16 research outputs found
Unravelling the relationship between animal growth and immune response during micro-parasitic infections
Background: Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone. Methodology/Principal Findings: Here, a mathematical model is proposed to explore the hypothesis that a host's response to pathogen challenge largely depends on the interaction between a host's genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal's ability to cope with pathogens and greater resistance may reduce growth in the short-term. Significance: Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response. © 2009 Doeschl-Wilson et al
The upregulation of Na+,K(+)-ATPase pump numbers in lymphocytes from the first-degree unaffected relatives of patients with manic depressive psychosis in response to in vitro lithium and sodium ethacrynate.
Patients with manic depressive disorder (DSM-III-R bipolar disorder) have an abnormality of the Na+,K(+)-ATPase pumps in their lymphocytes: the pump numbers do not upregulate to stimulation with lithium and ethacrynate. We have now investigated the in vitro adaptive responses of lymphocyte Na+,K(+)-ATPase pumps in the first-degree unaffected relatives of patients with a clear history of manic depressive disorder. The lymphocytes of the healthy relatives upregulated their Na+,K(+)-ATPase pumps normally, suggesting that the abnormal response that we have previously observed in patients with the disorder reflects a complex relation between the biochemical phenotype and the development of clinical symptoms
Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection
Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic