81 research outputs found

    Comment on “Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature” by W. Siebrand, Z. Smedarchina, E. MartĂ­nez-NĂșñez and A. FernĂĄndez-Ramos, Phys. Chem. Chem. Phys., 2016, 18, 22712

    Get PDF
    The article “Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature” proposes a dimer mediated mechanism in order to explain the large low temperature rate coefficients for the OH + methanol reaction measured by several groups. It is demonstrated here theoretically that under the conditions of these low temperature experiments, there are insufficient dimers formed for the proposed new mechanism to apply. Experimental evidence is also presented to show that dimerization of the methanol reagent does not influence the rate coefficients reported under the conditions of methanol concentration used for the kinetics studies. It is also emphasised that the low temperature experiments have been performed using both the Laval nozzle expansion and flow-tube methods, with good agreement found for the rate coefficients measured using these two distinct techniques

    Metal Hydrides Form Halogen Bonds: Measurement of Energetics of Binding

    Get PDF
    The formation of halogen bonds from iodopentafluorobenzene and 1-iodoperfluorohexane to a series of bis(η5-cyclopentadienyl)metal hydrides (Cp2TaH3, 1; Cp2MH2, M = Mo, 2, M = W, 3; Cp2ReH, 4; Cp2Ta(H)CO, 5; Cp = η5-cyclopentadienyl) is demonstrated by 1H NMR spectroscopy. Interaction enthalpies and entropies for complex 1 with C6F5I and C6F13I are reported (ΔH° = −10.9 ± 0.4 and −11.8 ± 0.3 kJ/mol; ΔS° = −38 ± 2 and −34 ± 2 J/(mol·K), respectively) and found to be stronger than those for 1 with the hydrogen-bond donor indole (ΔH° = −7.3 ± 0.1 kJ/mol, ΔS° = −24 ± 1 J/(mol·K)). For the more reactive complexes 2–5, measurements are limited to determination of their low-temperature (212 K) association constants with C6F5I as 2.9 ± 0.2, 2.5 ± 0.1, <1.5, and 12.5 ± 0.3 M–1, respectively

    A crowdsourcing database for the copy-number variation of the spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database.This work is supported by Grants PID2020-117979RB-I00 from the Spanish Ministry of Science and Innovation; by the Institute of Health Carlos III (project IMPaCT-Data, exp. IMP/00019, IMP/00009 and PI20/01305), co-funded by the European Union, European Regional Development Fund (ERDF, “A way to make Europe”)

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research

    A major locus for autosomal recessive retinitis pigmentosa on 6q, determined by homozygosity mapping of chromosomal regions that contain gamma-aminobutyric acid-receptor clusters.

    Get PDF
    Retinitis pigmentosa (RP) is the most common inherited retinal dystrophy, with extensive allelic and nonallelic genetic heterogeneity. Autosomal recessive RP (arRP) is the most common form of RP worldwide, with at least nine loci known and accountable for approximately 10%-15% of all cases. Gamma-aminobutyric acid (GABA) is the major inhibitory transmitter in the CNS. Different GABA receptors are expressed in all retinal layers, and inhibition mediated by GABA receptors in the human retina could be related to RP. We have selected chromosomal regions containing genes that encode the different subunits of the GABA receptors, for homozygosity mapping in inbred families affected by arRP. We identify a new locus for arRP, on chromosome 6, between markers D6S257 and D6S1644. Our data suggest that 10%-20% of Spanish families affected by typical arRP could have linkage to this new locus. This region contains subunits GABRR1 and GABRR2 of the GABA-C receptor, which is the effector of lateral inhibition at the retina
    • 

    corecore