32 research outputs found

    A key to selected rockfishes (Sebastes spp.) based on mitochondrial DNA restriction fragment analysis

    Get PDF
    Larval and juvenile rockfishes (Sebastes spp.) are difficult to identify using morphological characters. We developed a key based on sizes of restriction endonuclease fragments of the NADH dehydrogenase-3 and -4 (ND3/ND4) and 12S and 16S ribosomal RNA (12S/16S) mitochondrial regions. The key makes use of variation in the ND3/ND4 region. Restriction endonuclease Dde I variation can corroborate identifications, as can 12S/16S variation. The key, based on 71 species, includes most North American taxa, several Asian species, and Sebastolobus alascanus and Helicolenus hilgendorfi that are closely related to rockfishes. Fifty-eight of 71 rockfish species in our database can be distinguished unequivocally, using one to five restriction enzymes; identities of the remaining species are narrowed to small groups: 1) S. polyspinis, S. crameri, and S. ciliatus or variabilis (the two species could not be distinguished and were considered as a single species) ; 2) S. chlorostictus, S. eos, and S. rosenblatti; 3) S. entomelas and S. mystinus; 4)S. emphaeus, S. variegatus, and S. wilsoni; and 5) S. carnatus and S. chrysomelas

    Genetic and morphological identification of pelagic juvenile rockfish collected from the Gulf of Alaska

    Get PDF
    Pelagic juvenile rockfish (Sebastes spp.) collected in surveys designed to assess juvenile salmonids and other species in the Gulf of Alaska in 1998 and 2000–2003 provide an opportunity to document the occurrence of the pelagic juveniles of several species of rockfish. Often, species identification of rockfish is difficult or impossible at this stage of development (~20 to 60 mm), and few species indigenous to Alaska waters have been described. Use of mitochondrial DNA markers for rockfish species allowed unequivocal identification of ten species (S. aleutianus, S. alutus, S. borealis, S. entomelas, S. flavidus, S. melanops, S. pinniger, S. proriger, S. reedi, and S. ruberrimus) in subsamples from the collections. Other specimens were genetically assignable to groups of two or three species. Sebastes borealis, S. crameri, and S. reedi were identified using morphological data. Combining genetic and morphological data allowed successful resolution of the other species as S. emphaeus, probably S. ciliatus (although S. polyspinis cannot be totally ruled out), and S. polyspinis. Many specimens were initially morphologically indistinguishable from S. alutus, and several morphological groups included fish genetically identified as S. alutus. This paper details the characteristics of these pelagic juveniles to facilitate morphological identification of these species in future collections. (PDF file contains 32 pages.

    Stock Composition of Some Sockeye Salmon, Oncorhynchus nerka, Catches in Southeast Alaska, Based on Incidence of Allozyme Variants, Freshwater Ages, and a Brain-Tissue Parasite

    Get PDF
    The incidence of four discrete characters of individual sockeye salmon -two genetically inherited proteins (PGM-1*and PGM-2*), freshwater age at migration, and the presence of the brain-tissue parasite Myxobolus arcticus-in weekly samples from two Alaskan fisheries (Noyes Island in 1986 and Sumner Strait in 1987) were used to infer stock composition of the catches based on corresponding character samples from 73 Alaskan and Canadian stocks. Estimated contributions of 13 stock groups, formed on the basis of character similarity of their members, were roughly consistent with expectations from tagging experiments, knowledge of stock magnitudes, and similar assessments from scales. Imprecision of the estimated contributions by the 13 stock groups limited their practical value; but variability was much reduced for combined estimated contributions by two inclusive categories, namely stock groups whose members had either high or low brainparasite prevalence. Noyes Island catches consisted predominantly of unparasitized fish, most of which were probably of Canadian origin. The majority of Sumner Strait catches consisted of parasitized fish, whose freshwater origins may have been in Alaska or Canada. (PDF file contains 27 pages.

    Positive Darwinian Selection in the Piston That Powers Proton Pumps in Complex I of the Mitochondria of Pacific Salmon

    Get PDF
    The mechanism of oxidative phosphorylation is well understood, but evolution of the proteins involved is not. We combined phylogenetic, genomic, and structural biology analyses to examine the evolution of twelve mitochondrial encoded proteins of closely related, yet phenotypically diverse, Pacific salmon. Two separate analyses identified the same seven positively selected sites in ND5. A strong signal was also detected at three sites of ND2. An energetic coupling analysis revealed several structures in the ND5 protein that may have co-evolved with the selected sites. These data implicate Complex I, specifically the piston arm of ND5 where it connects the proton pumps, as important in the evolution of Pacific salmon. Lastly, the lineage to Chinook experienced rapid evolution at the piston arm

    Grus

    No full text
    Full ND5 sequence alignment for Cranes

    Phocidae

    No full text
    Full ND5 sequence alignment for True seals

    Data from: Evolution: are the monkeys’ typewriters rigged?

    No full text
    Evolution is presumed to proceed by random mutations, which increase an individual’s fitness. Increased fitness produces a higher survival rate for those individuals within populations and drives the variants to fixation over large timescales to produce new species. We recently identified positively selected sites in mitochondrial complex I in numerous, diverse taxa. In one taxon, a simple sequence repeat (SSR) encompassed the positively selected sites. We hypothesized a model in which: (i) slip-strand mis-pairing during replication due to the SSR increases the mutation rate at these sites, and (ii) a functional constraint at the protein level maintains the SSR and therefore a higher mutation rate at this site over large time scales to drive evolution. We tested this model by identifying SSRs in a mitochondrial-encoded protein in species from our previous work and determined that nearly all of the positively selected sites encompass an SSR. Furthermore, we show that our proposed model accounts for most of the mutations at neutral sites but it is probably the predominant mechanism at positively selected sites. This suggests that evolution does not proceed by simple random processes but is guided by physical properties of the DNA itself and functional constraint of the proteins encoded by the DNA

    Takifugu

    No full text
    Full ND5 sequence alignment for Puffer Fish

    Hypsiglena

    No full text
    Full ND5 sequence alignment for Night Snakes
    corecore