400 research outputs found

    Using supervised learning algorithms as a follow-up method in the search of gravitational waves from core-collapse supernovae

    Get PDF
    We present a follow-up method based on supervised machine learning (ML) to improve the performance in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of reconstruction parameters provided by cWB as features. Detected noise events are discarded yielding a reduction in the false alarm rate (FAR) and the false alarm probability thus enhancing the statistical significance. We tested the proposed method using strain data from the first half of the third observing run of advanced LIGO, and CCSNe GW signals extracted from 3D simulations. The ML model is tuned using a dataset of noise and signal events, and then used to identify and discard noise events in the cWB analyses. Noise and signal reduction levels were examined in single (L1 and H1) and two detector network (L1H1). The FAR was reduced by a factor of ∼10 to ∼100 resulting in an enhancement in the statistical significance of ∼1σ to ∼2σ, while not impacting the detection efficiencies

    Using Supervised Learning Algorithms as a Follow-Up Method in the Search of Gravitational Waves from Core-Collapse Supernovae

    Get PDF
    We present a follow-up method based on supervised machine learning (ML) to improve the performance in the search of gravitational wave (GW) bursts from core-collapse supernovae (CCSNe) using the coherent WaveBurst (cWB) pipeline. The ML model discriminates noise from signal events by using a set of reconstruction parameters provided by cWB as features. Detected noise events are discarded yielding a reduction in the false alarm rate (FAR) and the false alarm probability thus enhancing the statistical significance. We tested the proposed method using strain data from the first half of the third observing run of advanced LIGO, and CCSNe GW signals extracted from 3D simulations. The ML model is tuned using a dataset of noise and signal events, and then used to identify and discard noise events in the cWB analyses. Noise and signal reduction levels were examined in single (L1 and H1) and two detector networks (L1H1). The FAR was reduced by a factor of ∼10 to ∼100 resulting in an enhancement in the statistical significance of ∼1σ to ∼2σ, while not impacting the detection efficiencies

    Detecting and reconstructing gravitational waves from the next galactic core-collapse supernova in the advanced detector era

    Get PDF
    We performed a detailed analysis of the detectability of a wide range of gravitational waves derived from core-collapse supernova simulations using gravitational-wave detector noise scaled to the sensitivity of the upcoming fourth and fifth observing runs of the Advanced LIGO, Advanced Virgo, and KAGRA. We use the coherent WaveBurst algorithm, which was used in the previous observing runs to search for gravitational waves from core-collapse supernovae. As coherent WaveBurst makes minimal assumptions on the morphology of a gravitational-wave signal, it can play an important role in the first detection of gravitational waves from an event in the Milky Way. We predict that signals from neutrino-driven explosions could be detected up to an average distance of 10 kpc, and distances of over 100 kpc can be reached for explosions of rapidly-rotating progenitor stars. An estimated minimum signal-to-noise ratio of 10–25 is needed for the signals to be detected. We quantify the accuracy of the waveforms reconstructed with coherent WaveBurst and we determine that the most challenging signals to reconstruct are those produced in long-duration neutrino-driven explosions, and models that form black holes a few seconds after the core bounce

    An Optically Targeted Search for Gravitational Waves emitted by Core-Collapse Supernovae during the Third Observing Run of Advanced LIGO and Advanced Virgo

    Get PDF
    We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed optically within 30 Mpc during the third observing run of Advanced LIGO and Advanced Virgo. No gravitational wave associated with a core-collapse supernova has been identified. We then report the detection efficiency for a variety of possible gravitational-wave emissions. For neutrino-driven explosions, the distance at which we reach 50% detection efficiency is up to 8.9 kpc, while more energetic magnetorotationally-driven explosions are detectable at larger distances. The distance reaches for selected models of the black hole formation, and quantum chromodynamics phase transition are also provided. We then constrain the core-collapse supernova engine across a wide frequency range from 50 Hz to 2 kHz. The upper limits on gravitational-wave energy and luminosity emission are at low frequencies down to 10−4M⊙c2 and 5×10−4M⊙c2/s, respectively. The upper limits on the proto-neutron star ellipticity are down to 5 at high frequencies. Finally, by combining the results obtained with the data from the first and second observing runs of LIGO and Virgo, we improve the constraints of the parameter spaces of the extreme emission models. Specifically, the proto-neutron star ellipticities for the long-lasting bar mode model are down to 1 for long emission (1 s) at high frequency

    Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog

    Get PDF
    We report on the population of 47 compact binary mergers detected with a false-alarm rate of (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power law with a sharp high-mass cutoff; it is more consistent with a broken power law with a break at 39.7-+9.120.3 M? or a power law with a Gaussian feature peaking at 33.1-+5.64.0 M? (90% credible interval). While the primary mass distribution must extend to ~65 M? or beyond, only 2.9-+1.73.5% of systems have primary masses greater than 45 M?. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover,12%-44% of BBH systems have spins tilted by more than 90°, giving rise to a negative effective inspiral spin parameter, ceff. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBHs with nonvanishing ceff| \u3e 0.01 are dynamically assembled. Third, we estimate merger rates, finding RBBH = 23.9-+8.614.3 Gpc-3 yr-1 for BBHs and RBNS = 320-+240490 Gpc-3 yr-1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility) but not faster than the star formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier

    Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910

    Get PDF
    We present a search for quasi-monochromatic gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using Neutron star Interior Composition Explorer (NICER) data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and exhibits fRequent and strong glitches. Analyses of its long-term and interglitch braking indices provide intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of the LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency from PSR J0537-6910. We find no signal, however, and report upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of 2 and limit gravitational waves from the l = m = 2 mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is constrained to less than about 3 ×10-5, which is the third best constraint for any young pulsar

    Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars

    Get PDF
    © 2020. The American Astronomical Society. All rights reserved.. We present a search for continuous gravitational waves from five radio pulsars, comprising three recycled pulsars (PSR J0437-4715, PSR J0711-6830, and PSR J0737-3039A) and two young pulsars: the Crab pulsar (J0534+2200) and the Vela pulsar (J0835-4510). We use data from the third observing run of Advanced LIGO and Virgo combined with data from their first and second observing runs. For the first time, we are able to match (for PSR J0437-4715) or surpass (for PSR J0711-6830) the indirect limits on gravitational-wave emission from recycled pulsars inferred from their observed spin-downs, and constrain their equatorial ellipticities to be less than 10-8. For each of the five pulsars, we perform targeted searches that assume a tight coupling between the gravitational-wave and electromagnetic signal phase evolution. We also present constraints on PSR J0711-6830, the Crab pulsar, and the Vela pulsar from a search that relaxes this assumption, allowing the gravitational-wave signal to vary from the electromagnetic expectation within a narrow band of frequencies and frequency derivatives

    Searches For Continuous Gravitational Waves From Young Supernova Remnants In The Early Third Observing Run Of Advanced Ligo And Virgo

    Get PDF
    We present results of three wide-band directed searches for continuous gravitational waves from 15 young supernova remnants in the first half of the third Advanced LIGO and Virgo observing run. We use three search pipelines with distinct signal models and methods of identifying noise artifacts. Without ephemerides of these sources, the searches are conducted over a fRequency band spanning from 10 to 2 kHz. We find no evidence of continuous gravitational radiation from these sources. We set upper limits on the intrinsic signal strain at 95% confidence level in sample subbands, estimate the sensitivity in the full band, and derive the corresponding constraints on the fiducial neutron star ellipticity and r-mode amplitude. The best 95% confidence constraints placed on the signal strain are 7.7 x 10(-26) and 7.8 x 10(-26) near 200 Hz for the supernova remnants G39.2-0.3 and G65.7+1.2, respectively. The most stringent constraints on the ellipticity and r-mode amplitude reach less than or similar to 10(-7) and less than or similar to 10(-5), respectively, at frequencies above similar to 400 Hz for the closest supernova remnant G266.2-1.2/Vela Jr

    Search For Anisotropic Gravitational-Wave Backgrounds Using Data From Advanced Ligo And Advanced Virgo\u27S First Three Observing Runs

    Get PDF
    We report results from searches for anisotropic stochastic gravitational-wave backgrounds using data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. For the first time, we include Virgo data in our analysis and run our search with a new efficient pipeline called PyStoch on data folded over one sidereal day. We use gravitational-wave radiometry (broadband and narrow band) to produce sky maps of stochastic gravitational-wave backgrounds and to search for gravitational waves from point sources. A spherical harmonic decomposition method is employed to look for gravitationalwave emission from spatially-extended sources. Neither technique found evidence of gravitational-wave signals. Hence we derive 95% confidence-level upper limit sky maps on the gravitational-wave energy flux from broadband point sources, ranging from F-a,F-Theta \u3c (0.013-7.6) x 10(-8) erg cm(-2) s(-1) Hz(-1), and on the (normalized) gravitational-wave energy density spectrum from extended sources, ranging from Omega(a,Theta) \u3c (0.57-9.3) x 10(-9) sr(-1), depending on direction (Theta) and spectral index (alpha). These limits improve upon previous limits by factors of 2.9-3.5. We also set 95% confidence level upper limits on the frequencydependent strain amplitudes of quasimonochromatic gravitational waves coming from three interesting targets, Scorpius X-1, SN 1987A and the Galactic Center, with best upper limits range from h(0) \u3c (1.7-2.1) x 10(-25), a factor of \u3e= 2.0 improvement compared to previous stochastic radiometer searches

    Upper Limits On The Isotropic Gravitational-Wave Background From Advanced Ligo And Advanced Virgo\u27S Third Observing Run

    Get PDF
    We report results of a search for an isotropic gravitational-wave background (GWB) using data from Advanced LIGO\u27s and Advanced Virgo\u27s third observing run (O3) combined with upper limits from the earlier O1 and O2 runs. Unlike in previous observing runs in the advanced detector era, we include Virgo in the search for the GWB. The results of the search are consistent with uncorrelated noise, and therefore we place upper limits on the strength of the GWB. We find that the dimensionless energy density Omega(GW) \u3c= 5.8 x 10(-9) at the 95% credible level for a flat (frequency-independent) GWB, using a prior which is uniform in the log of the strength of the GWB, with 99% of the sensitivity coming from the band 20-76.6 Hz; Omega(GW)(f) \u3c= 3.4 x 10(-9) at 25 Hz for a power-law GWB with a spectral index of 2/3 (consistent with expectations for compact binary coalescences), in the band 20-90.6 Hz; and Omega(GW)(f) \u3c= 3.9 x 10(-10) at 25 Hz for a spectral index of 3, in the band 20-291.6 Hz. These upper limits improve over our previous results by a factor of 6.0 for a flat GWB, 8.8 for a spectral index of 2/3, and 13.1 for a spectral index of 3. We also search for a GWB arising from scalar and vector modes, which are predicted by alternative theories of gravity; we do not find evidence of these, and place upper limits on the strength of GWBs with these polarizations. We demonstrate that there is no evidence of correlated noise of magnetic origin by performing a Bayesian analysis that allows for the presence of both a GWB and an effective magnetic background arising from geophysical Schumann resonances. We compare our upper limits to a fiducial model for the GWB from the merger of compact binaries, updating the model to use the most recent data-driven population inference from the systems detected during O3a. Finally, we combine our results with observations of individual mergers and show that, at design sensitivity, this joint approach may yield stronger constraints on the merger rate of binary black holes at z greater than or similar to 2 than can be achieved with individually resolved mergers alone
    • …
    corecore