13 research outputs found

    Study of suitability of AvaSpec array spectrometer for solar UV field measurements

    Get PDF
    A system to record the ultraviolet (UV) spectra of atmospheric global irradiance with the miniature fiber optic spectrometer AvaSpec-256 was developed for continuous computer-aided spectrometry at Tartu Observatory in 2005. As a result, the database of spectra recorded with 15-min-interval round 24 h over 300–400 nm, has been developed. The quantities retrieved from the spectra have been compared with those measured by the Scintec erythemal UV-SET sensor and the Kipp & Zonen narrowband 306 nm sensor. Almost clear and overcast days were selected for comparison. Reliable results on the spectral distribution of the UV global irradiance as well as the integrated daily spectral doses could be obtained at least during the bright half-year. The results were compared with the calculations performed by means of the LibRadtran package. The biases in irradiance were significant at SZA above 70–75°. At dominating larger SZA the recorded values need sophisticated corrections and remain less reliable. At lower latitudes than that of the study site (58.3°), the reliability of the spectrometer is expected to increase due to a smaller contribution of data measured at large SZA. <br></br> The variations of the ratio of UV-A/UV-B irradiance, retrieved from the spectra, were investigated. Also the covariation of the narrowband 306 nm irradiance and the irradiance integrated over the whole UV-B range was studied. The biases between the UV-A/UV-B irradiances calculated by means of the LibRadtran package and measured with the AvaSpec were small at SZA below 70°. At larger SZA the values of the ratio as well as the biases increased, significantly depending on total ozone

    Study of suitability of cheap AvaSpec array spectrometer for solar UV field measurements

    No full text
    International audienceA system to record the ultraviolet (UV) spectra of atmospheric global irradiance with the miniature fiber optic spectrometer AvaSpec-256 was developed for continuous computer-aided spectrometry at Tartu Observatory in 2005. As a result, the database of spectra recorded with 15-min-interval round 24 h over 300?400 nm, has been developed. The quantities retrieved from the spectra have been compared with those measured by the Scintec erythemal UV-SET sensor and the Kipp&Zonen narrowband 306 nm sensor. Almost clear and overcast days were selected for comparison. Reliable results on the spectral distribution of the UV global irradiance as well as the integrated daily spectral doses could be obtained at least during the bright half-year. The results were compared with the calculations performed by means of the LibRadtran package. The biases in irradiance were significant at SZA above 70?75°. At dominating larger SZA the recorded values need sophisticated corrections and remain less reliable. At lower latitudes than that of the study site (58.3 degrees), the reliability of the spectrometer is expected to increase due to a smaller contribution of data measured at large SZA. The variations of the ratio of UV-A/UV-B irradiance, retrieved from the spectra, were investigated. Also the covariation of the narrowband 306 nm irradiance and the irradiance integrated over the whole UV-B range was studied. The biases between calculated by means of the LibRadtran package and the measured ratio of UV-A/UV-B irradiance were small at SZA below 70°. At larger SZA the values of the ratio as well as the biases increased, significantly depending on total ozone

    In situ determination of the remote sensing reflectance: an inter-comparison

    Get PDF
    Inter-comparison of data products from simultaneous measurements performed with independent systems and methods is a viable approach to assess the consistency of data and additionally to investigate uncertainties. Within such a context the inter-comparison called Assessment of In Situ Radiometric Capabilities for Coastal Water Remote Sensing Applications (ARC) was carried out at the Acqua Alta Oceanographic Tower in the northern Adriatic Sea to explore the accuracy of in situ data products from various in- and above-water optical systems and methods. Measurements were performed under almost ideal conditions, including a stable deployment platform, clear sky, relatively low sun zenith angles and moderately low sea state. Additionally, all optical sensors involved in the experiment were inter-calibrated through absolute radiometric calibration performed with the same standards and methods. Inter-compared data products include spectral water-leaving radiance Lw (λ), above-water downward irradiance Ed(0+,λ) and remote sensing reflectance Rrs(λ). Data products from the various measurement systems/methods were directly compared to those from a single reference system/method. Results for Rrs(λ) indicate spectrally averaged values of relative differences comprised between -1 and +6%, while spectrally averaged values of absolute differences vary from approximately 6% for the above-water systems/methods to 9% for buoy-based systems/methods. The agreement between Rrs(λ) spectral relative differences and estimates of combined uncertainties of the inter-compared systems/methods is noteworthy

    Comparison of Above-Water Seabird and TriOS Radiometers along an Atlantic Meridional Transect

    Get PDF
    The Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) project has carried out a range of activities to evaluate and improve the state-of-the-art in ocean color radiometry. This paper described the results from a ship-based intercomparison conducted on the Atlantic Meridional Transect 27 from 23rd September to 5th November 2017. Two different radiometric systems, TriOS-Radiation Measurement Sensor with Enhanced Spectral resolution (RAMSES) and Seabird-Hyperspectral Surface Acquisition System (HyperSAS), were compared and operated side-by-side over a wide range of Atlantic provinces and environmental conditions. Both systems were calibrated for traceability to SI (SystĂšme international) units at the same optical laboratory under uniform conditions before and after the field campaign. The in situ results and their accompanying uncertainties were evaluated using the same data handling protocols. The field data revealed variability in the responsivity between TRiOS and Seabird sensors, which is dependent on the ambient environmental and illumination conditions. The straylight effects for individual sensors were mostly within ±3%. A near infra-red (NIR) similarity correction changed the water-leaving reflectance (ρw) and water-leaving radiance (Lw) spectra significantly, bringing also a convergence in outliers. For improving the estimates of in situ uncertainty, it is recommended that additional characterization of radiometers and environmental ancillary measurements are undertaken. In general, the comparison of radiometric systems showed agreement within the evaluated uncertainty limits. Consistency of in situ results with the available Sentinel-3A Ocean and Land Color Instrument (OLCI) data in the range from (400
560) nm was also satisfactory (-8% < Mean Percentage Difference (MPD) < 15%) and showed good agreement in terms of the shape of the spectra and absolute values

    Intercomparison in the field between the new WISP-3 and other radiometers (TriOS Ramses, ASD FieldSpec, and TACCS)

    Get PDF
    Optical close-range instruments can be applied to derive water quality parameters for monitoring purposes and for validation of optical satellite data. In situ radiometers are often difficult to deploy, especially from a small boat or a remote location. The water insight spectrometer (WISP-3) is a new hand-held radiometer for monitoring water quality, which automatically performs measurements with three radiometers (L-sky, L-u, E-d) and does not need to be connected with cables and electrical power during measurements. The instrument is described and its performance is assessed by an intercomparison to well-known radiometers, under real fieldwork conditions using a small boat and with sometimes windy and cloudy weather. Root mean squared percentage errors relative to those of the TriOS system were generally between 20% and 30% for remote sensing reflection, which was comparable to those of the other instruments included in this study. From this assessment, it can be stated that for the tested conditions, the WISP-3 can be used to obtain reflection spectra with accuracies in the same range as well-known instruments. When tuned with suitable regional algorithms, it can be used for quick scans for water quality monitoring of Chl, SPM, and aCDOM. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063615

    Derivation of uncertainty budgets for continuous above-water radiometric measurements along an Atlantic Meridional Transect

    Get PDF
    This is the final version. Available from Optica via the DOI in this record. Data Availability: Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.Fiducial reference measurements are in-situ data traceable to metrology standards, with associated uncertainties. This paper presents the methodology used to derive the uncertainty budget for underway, above-water measurements from the Seabird Hyperspectral Surface Acquisition System deployed on an Atlantic Meridional Transect in 2018. The average uncertainty of remote sensing reflectance for clear sky days was ∌ 6% at wavelengths < 490 nm and ∌ 12% at wavelengths > 550 nm. The environmental variability such as sun position, wind speed and skylight distribution caused the greatest uncertainty. The different components of the uncertainty budget are critically assessed to indicate how the measurement procedure could be improved through reducing the principal uncertainty sources.Natural Environment Research CouncilUK Research and InnovationEuropean CommissionEuropean Space AgencyEuropean Space AgencyEuropean Space AgencyEuropean Space AgencyNational Centre for Earth Observatio

    Complete characterization of ocean color radiometers

    Get PDF
    Verifying and validating waterleaving radiance measurements from space for an accurate derivation of Ocean/Water Colour biogeophysical products is based on concurrent high-quality fiducial reference measurements (FRM) carried out on the ground or water body. The FRM principles established by the Committee on Earth Observation Satellites (CEOS) recommend that in situ Ocean Colour radiometers (OCR) have a documented history of SI traceable calibrations including uncertainty budgets. Furthermore, there can be significant differences between calibration and use of the instruments in the field due to differences in operating temperature, angular variation of the light field (especially for irradiance sensors), the intensity of the measured radiation, and spectral variation of the target, among others. Each of these factors may interact with individual properties of the instrument when deployed in the field, and estimation of such uncertainties requires instrument characterization in addition to the absolute radiometric calibration if expanded uncertainties within ±10% (k = 2) are the aim. The FRM4SOC Phase 2 project - funded by the European Commission in the frame of the Copernicus Programme and implemented by EUMETSAT - contributes to these efforts, aiming at developing an operational and sustained network of radiometric measurements of FRM quality. Within FRM4SOC-2, scientists from the Tartu Observatory (TO) of the University of Tartu performed an unprecedented batch of calibrations and characterizations on a set of 37 hyperspectral field radiometers representative of the most used OCR classes within the OC community. The calibrations and characterizations performed include the determination of radiometric responsivity, long-term stability, the accuracy of the spectral scale, non-linearity and accuracy of integration times, spectral stray light, angular response of irradiance sensors in air, dark signal, thermal sensitivity, polarization sensitivity, and signal-to-noise ratio of individual OCRs. Consistent correction of biases and extended uncertainty analysis procedures of in situ data obtained from different instruments and measurement models need to be clearly defined, which is the objective of this paper

    Field Intercomparison of Radiometer Measurements for Ocean Colour Validation

    Get PDF
    A field intercomparison was conducted at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea, from 9 to 19 July 2018 to assess differences in the accuracy of in- and above-water radiometer measurements used for the validation of ocean colour products. Ten measurement systems were compared. Prior to the intercomparison, the absolute radiometric calibration of all sensors was carried out using the same standards and methods at the same reference laboratory. Measurements were performed under clear sky conditions, relatively low sun zenith angles, moderately low sea state and on the same deployment platform and frame (except in-water systems). The weighted average of five above-water measurements was used as baseline reference for comparisons. For downwelling irradiance (), there was generally good agreement between sensors with differences of <6% for most of the sensors over the spectral range 400 nm–665 nm. One sensor exhibited a systematic bias, of up to 11%, due to poor cosine response. For sky radiance () the spectrally averaged difference between optical systems was <2.5% with a root mean square error (RMS) <0.01 mWm−2 nm−1 sr−1. For total above-water upwelling radiance (), the difference was <3.5% with an RMS <0.009 mWm−2 nm−1 sr−1. For remote-sensing reflectance (), the differences between above-water TriOS RAMSES were <3.5% and <2.5% at 443 and 560 nm, respectively, and were <7.5% for some systems at 665 nm. Seabird HyperSAS sensors were on average within 3.5% at 443 nm, 1% at 560 nm, and 3% at 665 nm. The differences between the weighted mean of the above-water and in-water systems was <15.8% across visible bands. A sensitivity analysis showed that accounted for the largest fraction of the variance in , which suggests that minimizing the errors arising from this measurement is the most important variable in reducing the inter-group differences in . The differences may also be due, in part, to using five of the above-water systems as a reference. To avoid this, in situ normalized water-leaving radiance () was therefore compared to AERONET-OC SeaPRiSM as an alternative reference measurement. For the TriOS-RAMSES and Seabird-Hyperspectral Surface Acquisition System (HyperSAS) sensors the differences were similar across the visible spectra with 4.7% and 4.9%, respectively. The difference between SeaPRiSM and two in-water systems at blue, green and red bands was 11.8%. This was partly due to temporal and spatial differences in sampling between the in-water and above-water systems and possibly due to uncertainties in instrument self-shading for one of the in-water measurements

    Field Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range

    Get PDF
    An intercomparison of radiance and irradiance ocean color radiometers (the second laboratory comparison exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: (1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; (2) indoor, laboratory intercomparison using stable radiance and irradiance sources in a controlled environment; (3) outdoor, field intercomparison of natural radiation sources over a natural water surface. The aim of the experiment was to provide a link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the third phase of LCE-2: The results of the field experiment. The calibration of radiometers and laboratory comparison experiment are presented in a related paper of the same journal issue. Compared to the laboratory comparison, the field intercomparison has demonstrated substantially larger variability between freshly calibrated sensors, because the targets and environmental conditions during radiometric calibration were different, both spectrally and spatially. Major differences were found for radiance sensors measuring a sunlit water target at viewing zenith angle of 139° because of the different fields of view. Major differences were found for irradiance sensors because of imperfect cosine response of diffusers. Variability between individual radiometers did depend significantly also on the type of the sensor and on the specific measurement target. Uniform SI traceable radiometric calibration ensuring fairly good consistency for indoor, laboratory measurements is insufficient for outdoor, field measurements, mainly due to the different angular variability of illumination. More stringent specifications and individual testing of radiometers for all relevant systematic effects (temperature, nonlinearity, spectral stray light, etc.) are needed to reduce biases between instruments and better quantify measurement uncertainties

    Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range

    Get PDF
    An intercomparison of radiance and irradiance ocean color radiometers (The Second Laboratory Comparison Exercise—LCE-2) was organized within the frame of the European Space Agency funded project Fiducial Reference Measurements for Satellite Ocean Color (FRM4SOC) May 8–13, 2017 at Tartu Observatory, Estonia. LCE-2 consisted of three sub-tasks: 1) SI-traceable radiometric calibration of all the participating radiance and irradiance radiometers at the Tartu Observatory just before the comparisons; 2) Indoor intercomparison using stable radiance and irradiance sources in controlled environment; and 3) Outdoor intercomparison of natural radiation sources over terrestrial water surface. The aim of the experiment was to provide one link in the chain of traceability from field measurements of water reflectance to the uniform SI-traceable calibration, and after calibration to verify whether different instruments measuring the same object provide results consistent within the expected uncertainty limits. This paper describes the activities and results of the first two phases of LCE-2: the SI-traceable radiometric calibration and indoor intercomparison, the results of outdoor experiment are presented in a related paper of the same journal issue. The indoor experiment of the LCE-2 has proven that uniform calibration just before the use of radiometers is highly effective. Distinct radiometers from different manufacturers operated by different scientists can yield quite close radiance and irradiance results (standard deviation s < 1%) under defined conditions. This holds when measuring stable lamp-based targets under stationary laboratory conditions with all the radiometers uniformly calibrated against the same standards just prior to the experiment. In addition, some unification of measurement and data processing must be settled. Uncertainty of radiance and irradiance measurement under these conditions largely consists of the sensor’s calibration uncertainty and of the spread of results obtained by individual sensors measuring the same object
    corecore