133 research outputs found
Free Meixner states
Free Meixner states are a class of functionals on non-commutative polynomials
introduced in math.CO/0410482. They are characterized by a resolvent-type form
for the generating function of their orthogonal polynomials, by a recursion
relation for those polynomials, or by a second-order non-commutative
differential equation satisfied by their free cumulant functional. In this
paper, we construct an operator model for free Meixner states. By combinatorial
methods, we also derive an operator model for their free cumulant functionals.
This, in turn, allows us to construct a number of examples. Many of these
examples are shown to be trivial, in the sense of being free products of
functionals which depend on only a single variable, or rotations of such free
products. On the other hand, the multinomial distribution is a free Meixner
state and is not a product. Neither is a large class of tracial free Meixner
states which are analogous to the simple quadratic exponential families in
statistics.Comment: 30 page
Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization
Let be an underlying space with a non-atomic measure on it (e.g.
and is the Lebesgue measure). We introduce and study a
class of non-commutative generalized stochastic processes, indexed by points of
, with freely independent values. Such a process (field),
, , is given a rigorous meaning through smearing out
with test functions on , with being a
(bounded) linear operator in a full Fock space. We define a set
of all continuous polynomials of , and then define a con-commutative
-space by taking the closure of in the norm
, where is the vacuum in the Fock
space. Through procedure of orthogonalization of polynomials, we construct a
unitary isomorphism between and a (Fock-space-type) Hilbert space
, with
explicitly given measures . We identify the Meixner class as those
processes for which the procedure of orthogonalization leaves the set invariant. (Note that, in the general case, the projection of a
continuous monomial of oder onto the -th chaos need not remain a
continuous polynomial.) Each element of the Meixner class is characterized by
two continuous functions and on , such that, in the
space, has representation
\omega(t)=\di_t^\dag+\lambda(t)\di_t^\dag\di_t+\di_t+\eta(t)\di_t^\dag\di^2_t,
where \di_t^\dag and \di_t are the usual creation and annihilation
operators at point
Semigroups of distributions with linear Jacobi parameters
We show that a convolution semigroup of measures has Jacobi parameters
polynomial in the convolution parameter if and only if the measures come
from the Meixner class. Moreover, we prove the parallel result, in a more
explicit way, for the free convolution and the free Meixner class. We then
construct the class of measures satisfying the same property for the two-state
free convolution. This class of two-state free convolution semigroups has not
been considered explicitly before. We show that it also has Meixner-type
properties. Specifically, it contains the analogs of the normal, Poisson, and
binomial distributions, has a Laha-Lukacs-type characterization, and is related
to the case of quadratic harnesses.Comment: v3: the article is merged back together with arXiv:1003.4025. A
significant revision following suggestions by the referee. 2 pdf figure
Lowering and raising operators for the free Meixner class of orthogonal polynomials
We compare some properties of the lowering and raising operators for the
classical and free classes of Meixner polynomials on the real line
Wick's theorem for q-deformed boson operators
In this paper combinatorial aspects of normal ordering arbitrary words in the
creation and annihilation operators of the q-deformed boson are discussed. In
particular, it is shown how by introducing appropriate q-weights for the
associated ``Feynman diagrams'' the normally ordered form of a general
expression in the creation and annihilation operators can be written as a sum
over all q-weighted Feynman diagrams, representing Wick's theorem in the
present context.Comment: 9 page
Network Creation Games: Think Global - Act Local
We investigate a non-cooperative game-theoretic model for the formation of
communication networks by selfish agents. Each agent aims for a central
position at minimum cost for creating edges. In particular, the general model
(Fabrikant et al., PODC'03) became popular for studying the structure of the
Internet or social networks. Despite its significance, locality in this game
was first studied only recently (Bil\`o et al., SPAA'14), where a worst case
locality model was presented, which came with a high efficiency loss in terms
of quality of equilibria. Our main contribution is a new and more optimistic
view on locality: agents are limited in their knowledge and actions to their
local view ranges, but can probe different strategies and finally choose the
best. We study the influence of our locality notion on the hardness of
computing best responses, convergence to equilibria, and quality of equilibria.
Moreover, we compare the strength of local versus non-local strategy-changes.
Our results address the gap between the original model and the worst case
locality variant. On the bright side, our efficiency results are in line with
observations from the original model, yet we have a non-constant lower bound on
the price of anarchy.Comment: An extended abstract of this paper has been accepted for publication
in the proceedings of the 40th International Conference on Mathematical
Foundations on Computer Scienc
On Linear Congestion Games with Altruistic Social Context
We study the issues of existence and inefficiency of pure Nash equilibria in
linear congestion games with altruistic social context, in the spirit of the
model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a
framework, given a real matrix specifying a particular
social context, each player aims at optimizing a linear combination of the
payoffs of all the players in the game, where, for each player , the
multiplicative coefficient is given by the value . We give a broad
characterization of the social contexts for which pure Nash equilibria are
always guaranteed to exist and provide tight or almost tight bounds on their
prices of anarchy and stability. In some of the considered cases, our
achievements either improve or extend results previously known in the
literature
The Firefighter Problem: A Structural Analysis
We consider the complexity of the firefighter problem where b>=1 firefighters
are available at each time step. This problem is proved NP-complete even on
trees of degree at most three and budget one (Finbow et al.,2007) and on trees
of bounded degree b+3 for any fixed budget b>=2 (Bazgan et al.,2012). In this
paper, we provide further insight into the complexity landscape of the problem
by showing that the pathwidth and the maximum degree of the input graph govern
its complexity. More precisely, we first prove that the problem is NP-complete
even on trees of pathwidth at most three for any fixed budget b>=1. We then
show that the problem turns out to be fixed parameter-tractable with respect to
the combined parameter "pathwidth" and "maximum degree" of the input graph
One-sided Cauchy-Stieltjes Kernel Families
This paper continues the study of a kernel family which uses the
Cauchy-Stieltjes kernel in place of the celebrated exponential kernel of the
exponential families theory. We extend the theory to cover generating measures
with support that is unbounded on one side. We illustrate the need for such an
extension by showing that cubic pseudo-variance functions correspond to
free-infinitely divisible laws without the first moment. We also determine the
domain of means, advancing the understanding of Cauchy-Stieltjes kernel
families also for compactly supported generating measures
Routing Games over Time with FIFO policy
We study atomic routing games where every agent travels both along its
decided edges and through time. The agents arriving on an edge are first lined
up in a \emph{first-in-first-out} queue and may wait: an edge is associated
with a capacity, which defines how many agents-per-time-step can pop from the
queue's head and enter the edge, to transit for a fixed delay. We show that the
best-response optimization problem is not approximable, and that deciding the
existence of a Nash equilibrium is complete for the second level of the
polynomial hierarchy. Then, we drop the rationality assumption, introduce a
behavioral concept based on GPS navigation, and study its worst-case efficiency
ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
- …