10 research outputs found
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
This online publication has been
corrected. The corrected version
first appeared at thelancet.com
on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Radiomics Features in Predicting Human Papillomavirus Status in Oropharyngeal Squamous Cell Carcinoma: A Systematic Review, Quality Appraisal, and Meta-Analysis
We sought to determine the diagnostic accuracy of radiomics features in predicting HPV status in oropharyngeal squamous cell carcinoma (SCC) compared to routine paraclinical measures used in clinical practice. Twenty-six articles were included in the systematic review, and thirteen were used for the meta-analysis. The overall sensitivity of the included studies was 0.78, the overall specificity was 0.76, and the overall area under the ROC curve was 0.84. The diagnostic odds ratio (DOR) equaled 12 (8, 17). Subgroup analysis showed no significant difference between radiomics features extracted from CT or MR images. Overall, the studies were of low quality in regard to radiomics quality score, although most had a low risk of bias based on the QUADAS-2 tool. Radiomics features showed good overall sensitivity and specificity in determining HPV status in OPSCC, though the low quality of the included studies poses problems for generalizability
Application of ChatGPT in multilingual medical education: How does ChatGPT fare in 2023's Iranian residency entrance examination
Background: ChatGPT is a large language model (LLM) artificial intelligence instrument trained on massive amounts of text data extracted from the internet and/or user input. In the present article, we aim to apply the latest version of ChatGPT to the Iranian Medical Residency Examination. Methods: The Iranian Medical Residency Examination is composed of 200 multichoice questions covering all domains of medicine. We used ChatGPT to translate questions into English, French, and Spanish. We fed the questions as multiple-choice questions and allowed ChatGPT to provide comprehensive answers and justifications for its choices. Results: ChatGPT was able to answer 161 (81.3% = 161/198) questions correctly when the Persian language was used. When the questions were translated into English, French, and Spanish, ChatGPT answered six, one, and five additional questions correctly, respectively. When comparing the different languages, there was no significant difference in the functioning of ChatGPT in different languages using either the McNemar test or the Binomial test. Conclusion: ChatGPT can deliver above-average performance in the Iranian Medical Residency Examination, demonstrating its potential for using language models in medicine
The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis
Background: To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. Methods: A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan–Meier curves. Results: Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. Conclusions: Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients
The Additive Value of Radiomics Features Extracted from Baseline MR Images to the Barcelona Clinic Liver Cancer (BCLC) Staging System in Predicting Transplant-Free Survival in Patients with Hepatocellular Carcinoma: A Single-Center Retrospective Analysis
Background: To study the additive value of radiomics features to the BCLC staging system in clustering HCC patients. Methods: A total of 266 patients with HCC were included in this retrospective study. All patients had undergone baseline MR imaging, and 95 radiomics features were extracted from 3D segmentations representative of lesions on the venous phase and apparent diffusion coefficient maps. A random forest algorithm was utilized to extract the most relevant features to transplant-free survival. The selected features were used alongside BCLC staging to construct Kaplan–Meier curves. Results: Out of 95 extracted features, the three most relevant features were incorporated into random forest classifiers. The Integrated Brier score of the prediction error curve was 0.135, 0.072, and 0.048 for the BCLC, radiomics, and combined models, respectively. The mean area under the receiver operating curve (ROC curve) over time for the three models was 81.1%, 77.3%, and 56.2% for the combined radiomics and BCLC models, respectively. Conclusions: Radiomics features outperformed the BCLC staging system in determining prognosis in HCC patients. The addition of a radiomics classifier increased the classification capability of the BCLC model. Texture analysis features could be considered as possible biomarkers in predicting transplant-free survival in HCC patients
Global, regional, and national burden of meningitis and its aetiologies, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background Although meningitis is largely preventable, it still causes hundreds of thousands of deaths globally each year. WHO set ambitious goals to reduce meningitis cases by 2030, and assessing trends in the global meningitis burden can help track progress and identify gaps in achieving these goals. Using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we aimed to assess incident cases and deaths due to acute infectious meningitis by aetiology and age from 1990 to 2019, for 204 countries and territories.
Methods We modelled meningitis mortality using vital registration, verbal autopsy, sample-based vital registration, and mortality surveillance data. Meningitis morbidity was modelled with a Bayesian compartmental model, using data from the published literature identified by a systematic review, as well as surveillance data, inpatient hospital admissions, health insurance claims, and cause-specific meningitis mortality estimates. For aetiology estimation, data from multiple causes of death, vital registration, hospital discharge, microbial laboratory, and literature studies were analysed by use of a network analysis model to estimate the proportion of meningitis deaths and cases attributable to the following aetiologies: Neisseria meningitidis, Streptococcus pneumoniae, Haemophilus influenzae, group B Streptococcus, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Staphylococcus aureus, viruses, and a residual other pathogen category.
Findings In 2019, there were an estimated 236 000 deaths (95% uncertainty interval [UI] 204 000-277 000) and 2.51 million (2.11-2.99) incident cases due to meningitis globally. The burden was greatest in children younger than 5 years, with 112 000 deaths (87 400-145 000) and 1.28 million incident cases (0.947-1.71) in 2019. Age-standardised mortality rates decreased from 7.5 (6.6-8.4) per 100 000 population in 1990 to 3.3 (2.8-3.9) per 100 000 population in 2019. The highest proportion of total all-age meningitis deaths in 2019 was attributable to S pneumoniae (18.1% [17.1-19.2]), followed by N meningitidis (13.6% [12.7-14.4]) and K pneumoniae (12.2% [10.2-14.3]). Between 1990 and 2019, H influenzae showed the largest reduction in the number of deaths among children younger than 5 years (76.5% [69.5-81.8]), followed by N meningitidis (72.3% [64.4-78.5]) and viruses (58.2% [47.1-67.3]).
Interpretation Substantial progress has been made in reducing meningitis mortality over the past three decades. However, more meningitis-related deaths might be prevented by quickly scaling up immunisation and expanding access to health services. Further reduction in the global meningitis burden should be possible through low-cost multivalent vaccines, increased access to accurate and rapid diagnostic assays, enhanced surveillance, and early treatmen
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
Global Burden of Cardiovascular Diseases and Risks, 1990-2022
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is a multinational collaborative research study with >10,000 collaborators around the world. GBD generates a time series of summary measures of health, including prevalence, cause-specific mortality (CSMR), years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life years (DALYs) to provide a comprehensive view of health burden for a wide range of stakeholders including clinicians, public and private health systems, ministries of health, and other policymakers. These estimates are produced for 371 causes of death and 88 risk factors according to mutually exclusive, collectively exhaustive hierarchies of health conditions and risks. The study is led by a principal investigator and governed by a study protocol, with oversight from a Scientific Council, and an Independent Advisory Committee.1 GBD is performed in compliance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).2 GBD uses de-identified data, and the waiver of informed consent was reviewed and approved by the University of Washington Institutional Review Board (study number 9060).
This almanac presents results for 18 cardiovascular diseases (CVD) and the CVD burden attributed to 15 risk factors (including an aggregate grouping of dietary risks) by GBD region. A summary of methods follows. Additional information can be found online at https://ghdx.healthdata.org/record/ihme-data/cvd-1990-2022, including:Funding was provided by the Bill and Melinda Gates Foundation, and the American College of Cardiology Foundation. The authors have reported that they have no relationships relevant to the contents of this paper to disclose. The contents and views expressed in this report are those of the authors and do not necessarily reflect the official views of the National Institutes of Health, the Department of Health and Human Services, the U.S. Government, or the affiliated institutions