1 research outputs found

    Perinecrotic Hypoxia Contributes to Ischemia/Reperfusion-Accelerated Outgrowth of Colorectal Micrometastases

    No full text
    Ischemia/reperfusion (I/R) is often inevitable during hepatic surgery and may stimulate the outgrowth of colorectal micrometastases. Postischemic microcirculatory disturbances contribute to I/R damage and may induce prolonged tissue hypoxia and consequent stabilization of hypoxia-inducible factor (HIF)-1α. The aim of this study was to evaluate the contribution of postischemic microcirculatory disturbances, hypoxia, and HIF-1α to I/R-accelerated tumor growth. Partial hepatic I/R attributable to temporary clamping of the left liver lobe induced microcirculatory failure for up to 5 days. This was accompanied by profound and prolonged perinecrotic tissue hypoxia, stabilization of HIF-1α, and massive perinecrotic outgrowth of pre-established micrometastases. Restoration of the microcirculation by treatment with Atrasentan and l-arginine minimized hypoxia and HIF-1α stabilization and reduced the accelerated outgrowth of micrometastases by 50%. Destabilization of HIF-1α by the HSP90 inhibitor 17-DMAG caused an increase in tissue necrosis but reduced I/R-stimulated tumor growth by more than 70%. In conclusion, prevention of postischemic microcirculatory disturbances and perinecrotic hypoxia reduces the accelerated outgrowth of colorectal liver metastases after I/R. This may, at least in part, be attributed to the prevention of HIF-1α stabilization. Prevention of tissue hypoxia or inhibition of HIF-1α may represent attractive approaches to limiting recurrent tumor growth after hepatic surgery
    corecore