3 research outputs found

    All stationary axi-symmetric local solutions of topologically massive gravity

    Full text link
    We classify all stationary axi-symmetric solutions of topologically massive gravity into Einstein, Schr\"odinger, warped and generic solutions. We construct explicitly all local solutions in the first three sectors and present an algorithm for the numerical construction of all local solutions in the generic sector. The only input for this algorithm is the value of one constant of motion if the solution has an analytic centre, and three constants of motion otherwise. We present several examples, including soliton solutions that asymptote to warped AdS.Comment: 42 pages, 9 figures. v2: Changed potentially confusing labelling of one sector, added references. v3: Minor changes, matches published versio

    Magnetic Field Induced Quantum Criticality via new Asymptotically AdS_5 Solutions

    Full text link
    Using analytical methods, we derive and extend previously obtained numerical results on the low temperature properties of holographic duals to four-dimensional gauge theories at finite density in a nonzero magnetic field. We find a new asymptotically AdS_5 solution representing the system at zero temperature. This solution has vanishing entropy density, and the charge density in the bulk is carried entirely by fluxes. The dimensionless magnetic field to charge density ratio for these solutions is bounded from below, with a quantum critical point appearing at the lower bound. Using matched asymptotic expansions, we extract the low temperature thermodynamics of the system. Above the critical magnetic field, the low temperature entropy density takes a simple form, linear in the temperature, and with a specific heat coefficient diverging at the critical point. At the critical magnetic field, we derive the scaling law s ~ T^{1/3} inferred previously from numerical analysis. We also compute the full scaling function describing the region near the critical point, and identify the dynamical critical exponent: z=3. These solutions are expected to holographically represent boundary theories in which strongly interacting fermions are filling up a Fermi sea. They are fully top-down constructions in which both the bulk and boundary theories have well known embeddings in string theory.Comment: 50 page
    corecore