109 research outputs found

    Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses

    Full text link
    The structure of states of the perturbed p-spin spherical spin-glass is analyzed. At low enough free energy metastable states have a supersymmetric structure, while at higher free energies the supersymmetry is broken. The transition between the supersymmetric and the supersymmetry-breaking phase is triggered by a change in the stability of states

    Tailored graph ensembles as proxies or null models for real networks II: results on directed graphs

    Full text link
    We generate new mathematical tools with which to quantify the macroscopic topological structure of large directed networks. This is achieved via a statistical mechanical analysis of constrained maximum entropy ensembles of directed random graphs with prescribed joint distributions for in- and outdegrees and prescribed degree-degree correlation functions. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies and complexities of these ensembles, and for information-theoretic distances. The results are applied to data on gene regulation networks.Comment: 21 pages, 1 figure, submitted to J. Phys.

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    Fluctuations in the coarsening dynamics of the O(N) model: are they similar to those in glassy systems?

    Full text link
    We study spatio-temporal fluctuations in the non-equilibrium dynamics of the d dimensional O(N) in the large N limit. We analyse the invariance of the dynamic equations for the global correlation and response in the slow ageing regime under transformations of time. We find that these equations are invariant under scale transformations. We extend this study to the action in the dynamic generating functional finding similar results. This model therefore falls into a different category from glassy problems in which full time-reparametrisation invariance, a larger symmetry that emcompasses time scale invariance, is expected to be realised asymptotically. Consequently, the spatio-temporal fluctuations of the large N O(N) model should follow a different pattern from that of glassy systems. We compute the fluctuations of local, as well as spatially separated, two-field composite operators and responses, and we confront our results with the ones found numerically for the 3d Edwards-Anderson model and kinetically constrained lattice gases. We analyse the dependence of the fluctuations of the composite operators on the growing domain length and we compare to what has been found in super-cooled liquids and glasses. Finally, we show that the development of time-reparametrisation invariance in glassy systems is intimately related to a well-defined and finite effective temperature, specified from the modification of the fluctuation-dissipation theorem out of equilibrium. We then conjecture that the global asymptotic time-reparametrisation invariance is broken down to time scale invariance in all coarsening systems.Comment: 57 pages, 5 figure

    Ageing, dynamical scaling and its extensions in many-particle systems without detailed balance

    Full text link
    Recent studies on the phenomenology of ageing in certain many-particle systems which are at a critical point of their non-equilibrium steady-states, are reviewed. Examples include the contact process, the parity-conserving branching-annihilating random walk, two exactly solvable particle-reaction models and kinetic growth models. While the generic scaling descriptions known from magnetic system can be taken over, some of the scaling relations between the ageing exponents are no longer valid. In particular, there is no obvious generalization of the universal limit fluctuation-dissipation ratio. The form of the scaling function of the two-time response function is compared with the prediction of the theory of local scale-invariance.Comment: Latex2e with IOP macros, 32 pages; extended discussion on contact process and new section on kinetic growth processe

    Single molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate

    Get PDF
    Photoswitchable fluorescent probes are central to localization-based super-resolution microscopy. Among these probes, fluorescent proteins are appealing because they are genetically encoded. Moreover, the ability to achieve a 1:1 labeling ratio between the fluorescent protein and the protein of interest makes these probes attractive for quantitative single-molecule counting. The percentage of fluorescent protein that is photoactivated into a fluorescently detectable form (i.e., the photoactivation efficiency) plays a crucial part in properly interpreting the quantitative information. It is important to characterize the photoactivation efficiency at the single-molecule level under the conditions used in super-resolution imaging. Here, we used the human glycine receptor expressed in Xenopus oocytes and stepwise photobleaching or single-molecule counting photoactivated localization microcopy (PALM) to determine the photoactivation efficiency of fluorescent proteins mEos2, mEos3.1, mEos3.2, Dendra2, mClavGR2, mMaple, PA-GFP and PA-mCherry. This analysis provides important information that must be considered when using these fluorescent proteins in quantitative super-resolution microscopy.Peer ReviewedPostprint (author's final draft

    Plasma and dietary carotenoid, retinol and tocopherol levels and the risk of gastric adenocarcinomas in the European prospective investigation into cancer and nutrition

    Get PDF
    Despite declining incidence rates, gastric cancer (GC) is a major cause of death worldwide. Its aetiology may involve dietary antioxidant micronutrients such as carotenoids and tocopherols. The objective of this study was to determine the association of plasma levels of seven common carotenoids, their total plasma concentration, retinol and α- and Îł-tocopherol, with the risk of gastric adenocarcinoma in a case–control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC), a large cohort involving 10 countries. A secondary objective was to determine the association of total sum of carotenoids, retinol and α-tocopherol on GCs by anatomical subsite (cardia/noncardia) and histological subtype (diffuse/intestinal). Analytes were measured by high-performance liquid chromatography in prediagnostic plasma from 244 GC cases and 645 controls matched by age, gender, study centre and date of blood donation. Conditional logistic regression models adjusted by body mass index, total energy intake, smoking and Helicobacter pylori infection status were used to estimate relative cancer risks. After an average 3.2 years of follow-up, a negative association with GC risk was observed in the highest vs the lowest quartiles of plasma ÎČ-cryptoxanthin (odds ratio (OR)=0.53, 95% confidence intervals (CI)=0.30–0.94, Ptrend=0.006), zeaxanthin (OR=0.39, 95% CI=0.22–0.69, Ptrend=0.005), retinol (OR=0.55, 95% CI=0.33–0.93, Ptrend=0.005) and lipid-unadjusted α-tocopherol (OR=0.59, 95% CI=0.37–0.94, Ptrend=0.022). For all analytes, no heterogeneity of risk estimates or significant associations were observed by anatomical subsite. In the diffuse histological subtype, an inverse association was observed with the highest vs lowest quartile of lipid-unadjusted α-tocopherol (OR=0.26, 95% CI=0.11–0.65, Ptrend=0.003). These results show that higher plasma concentrations of some carotenoids, retinol and α-tocopherol are associated with reduced risk of GC

    Ring-opening polymerization of cyclic phosphonates : access to inorganic polymers with a PV–O main chain

    Get PDF
    We describe a new class of inorganic polymeric materials featuring a main chain consisting of PV–O bonds and aryl side groups, which was obtained with >70 repeat units by ring-opening polymerization of cyclic phosphonates. This monomer–polymer system was found to be dynamic in solution enabling selective depolymerization under dilute conditions, which can be tuned by varying the substituents. The polymers show high thermal stability to weight loss and can be easily fabricated into self-standing thin films. Structural characterizations of the cyclic 6- and 12-membered ring precursors are also described
    • 

    corecore