2 research outputs found

    Oxygen Toxicity to the Immature Lung—Part II: The Unmet Clinical Need for Causal Therapy

    No full text
    Oxygen toxicity continues to be one of the inevitable injuries to the immature lung. Reactive oxygen species (ROS) production is the initial step leading to lung injury and, subsequently, the development of bronchopulmonary dysplasia (BPD). Today, BPD remains the most important disease burden following preterm delivery and results in life-long restrictions in lung function and further important health sequelae. Despite the tremendous progress in the pathomechanistic understanding derived from preclinical models, the clinical needs for preventive or curative therapies remain unmet. This review summarizes the clinical progress on guiding oxygen delivery to the preterm infant and elaborates future directions of research that need to take into account both hyperoxia and hypoxia as ROS sources and BPD drivers. Many strategies have been tested within clinical trials based on the mechanistic understanding of ROS actions, but most have failed to prove efficacy. The majority of these studies were tested in an era before the latest modes of non-invasive respiratory support and surfactant application were introduced or were not appropriately powered. A comprehensive re-evaluation of enzymatic, antioxidant, and anti-inflammatory therapies to prevent ROS injury is therefore indispensable. Strategies will only succeed if they are applied in a timely and vigorous manner and with the appropriate outcome measures

    Application of two different nasal CPAP levels for the treatment of respiratory distress syndrome in preterm infants-"The OPTTIMMAL-Trial"-Optimizing PEEP To The IMMAture Lungs: study protocol of a randomized controlled trial.

    Get PDF
    BACKGROUND Nasal continuous positive airway pressure (CPAP) applies positive end-expiratory pressure (PEEP) and has been shown to reduce the need for intubation and invasive mechanical ventilation in very low birth weight infants with respiratory distress syndrome. However, CPAP failure rates of 50% are reported in large randomized controlled trials. A possible explanation for these failure rates is the application of insufficient low levels of PEEP during nasal CPAP treatment to maintain adequate functional residual capacity shortly after birth. The optimum PEEP level to treat symptoms of respiratory distress in very low birth weight infants has not been assessed in clinical studies. The aim of the study is to compare two different PEEP levels during nasal CPAP treatment in preterm infants. METHODS In this randomized multicenter trial, 216 preterm infants born at 26 + 0-29 + 6 gestational weeks will be allocated to receive a higher (6-8 cmH2O) or a lower (3-5 cmH2O) PEEP during neonatal resuscitation and the first 120 h of life. The PEEP level within each group will be titrated throughout the intervention based on the FiO2 (fraction of inspired oxygen concentration) requirements to keep oxygenation within the target range. The primary outcome is defined as the need for intubation and mechanical ventilation for > 1 h or being not ventilated but reaching one of the two pre-defined CPAP failure criteria (FiO2 > 0.5 for > 1 h or pCO2 ≥ 70 mmHg in two consecutive blood gas analyses at least 2 h apart). DISCUSSION Based on available data from the literature, the optimum level of PEEP that most effectively treats respiratory distress syndrome in preterm infants is unknown, since the majority of large clinical trials applied a wide range of PEEP levels (4-8 cmH2O). The rationale for our study hypothesis is that the early application of a higher PEEP level will more effectively counteract the collapsing properties of the immature and surfactant-deficient lungs and that the level of inspired oxygen may serve as a surrogate marker to guide PEEP titration. Finding the optimum noninvasive continuous distending pressure during early nasal CPAP is required to improve CPAP efficacy and as a consequence to reduce the exposure to ventilator-induced lung injury and the incidence of chronic lung disease in this vulnerable population of very preterm infants. TRIAL REGISTRATION drks.de DRKS00019940 . Registered on March 13, 2020
    corecore