14 research outputs found
Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation
Ecdysteroids affect Drosophila ovarian stem cell niche formation and early germline differentiation. The steroid hormone ecdysone regulates germline development and stem cell niche establishment in the Drosophila ovary by modulating TGF-ÎČ signalling and cell adhesion
Diabetes and Parkinsonâs Disease: Understanding Shared Molecular Mechanisms
Aging is a major risk factor for Parkinsonâs disease (PD). Genetic mutations account for a small percentage of cases and the majority appears to be sporadic, with yet unclear causes. However, various environmental factors have been linked to an increased risk of developing PD and, therefore, understanding the complex interplay between genetic and environmental factors is crucial for developing effective disease-modifying therapies. Several studies identified a connection between type 2 diabetes (T2DM) and PD. T2DM is characterized by insulin resistance and failure of ÎČ-cells to compensate, leading to hyperglycemia and serious comorbidities. Both PD and T2DM share misregulated processes, including mitochondrial dysfunction, oxidative stress, chronic inflammation, altered proteostasis, protein aggregation, and misregulation of glucose metabolism. Chronic or recurring hyperglycemia is a T2DM hallmark and can lead to increased methylglyoxal (MGO) production, which is responsible for protein glycation. Glycation of alpha-synuclein (aSyn), a central player in PD pathogenesis, accelerates the deleterious aSyn effects. Interestingly, MGO blood plasma levels and aSyn glycation are significantly elevated in T2DM patients, suggesting a molecular mechanism underlying the T2DM - PD link. Compared to high constant glucose levels, glycemic variability (fluctuations in blood glucose levels), can be more detrimental for diabetic patients, causing oxidative stress, inflammation, and endothelial damage. Accordingly, it is imperative for future research to prioritize the exploration of glucose variabilityâs influence on PD development and progression. This involves moving beyond the binary classification of patients as diabetic or non-diabetic, aiming to pave the way for the development of enhanced therapeutic interventions
Production of Recombinant Alpha-Synuclein: Still No Standardized Protocol in Sight
Synucleinopathies are a group of neurodegenerative diseases, characterized by the abnormal accumulation of the protein alpha-synuclein (aSyn). aSyn is an intrinsically disordered protein that can adopt different aggregation states, some of which may be associated with disease. Therefore, understanding the transitions between such aggregation states may be essential for deciphering the molecular underpinnings underlying synucleinopathies. Recombinant aSyn is routinely produced and purified from E. coli in many laboratories, and in vitro preparations of aSyn aggregated species became central for modeling neurodegeneration in cell and animal models. Thus, reproducibility and reliability of such studies largely depends on the purity and homogeneity of aSyn preparations across batches and between laboratories. A variety of different methods are in use to produce and purify aSyn, which we review in this commentary. We also show how extraction buffer composition can affect aSyn aggregation, emphasizing the importance of standardizing protocols to ensure reproducibility between different laboratories and studies, which are essential for advancing the field
Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts
Highly reproducible epidemiological evidence shows that type 2 diabetes (T2D) increases the risk and rate of progression of Parkinson's disease (PD), and crucially, the repurposing of certain antidiabetic medications for the treatment of PD has shown early promise in clinical trials, suggesting that the effects of T2D on PD pathogenesis may be modifiable. The high prevalence of T2D means that a significant proportion of patients with PD may benefit from personalized antidiabetic treatment approaches that also confer neuroprotective benefits. Therefore, there is an immediate need to better understand the mechanistic relation between these conditions and the specific molecular pathways affected by T2D in the brain. Although there is considerable evidence that processes such as insulin signaling, mitochondrial function, autophagy, and inflammation are involved in the pathogenesis of both PD and T2D, the primary aim of this review is to highlight the evidence showing that T2D-associated dysregulation of these pathways occurs not only in the periphery but also in the brain and how this may facilitate neurodegeneration in PD. We also discuss the challenges involved in disentangling the complex relationship between T2D, insulin resistance, and PD, as well as important questions for further research. © 2022 International Parkinson and Movement Disorder Society
Effects of alpha-synuclein post-translational modifications on metal binding
Parkinsonâs disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology.Fil: GonzĂĄlez, Nazareno. Laboratorio Max Planck de BiologĂa Estructural, QuĂmica y BiofĂsica Molecular de Rosario; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario; ArgentinaFil: Arcos LĂłpez, Trinidad. Center for Research and Advanced Studies; MĂ©xicoFil: König, Annekatrin. University of Göttingen; AlemaniaFil: Quintanar, Liliana. Center for Research and Advanced Studies; MĂ©xicoFil: Menacho MĂĄrquez, Mauricio Ariel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario; ArgentinaFil: Outeiro, Tiago F.. University of Göttingen; Alemania. Max Planck Institute for Experimental Medicine; Alemania. University of Newcastle; Reino UnidoFil: Fernandez, Claudio Oscar. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario. Universidad Nacional de Rosario. Instituto de Investigaciones para el Descubrimiento de FĂĄrmacos de Rosario; Argentina. Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario; Argentina. Max Planck Institute for Biophysical Chemistry; Alemani
Chemical synthesis of site-selective advanced glycation end products in α-synuclein and its fragments
A strategy for multiple site-selective glycation of lysine side chains was developed, enabling the creation of glycated α-synuclein fragments implicated in neuronal dysfunction.Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as
N
(6)-(1-carboxymethyl)lysine (CML) and
N
(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation
in vivo
proves challenging due to the intricate nature of glycation reactions.
In vitro
, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.A strategy for multiple site-selective glycation of lysine side chains was developed, enabling the creation of glycated α-synuclein fragments implicated in neuronal dysfunction.Advanced glycation end products (AGEs) arise from the Maillard reaction between dicarbonyls and proteins, nucleic acids, or specific lipids. Notably, AGEs are linked to aging and implicated in various disorders, spanning from cancer to neurodegenerative diseases. While dicarbonyls like methylglyoxal preferentially target arginine residues, lysine-derived AGEs, such as
N
(6)-(1-carboxymethyl)lysine (CML) and
N
(6)-(1-carboxyethyl)lysine (CEL), are also abundant. Predicting protein glycation
in vivo
proves challenging due to the intricate nature of glycation reactions.
In vitro
, glycation is difficult to control, especially in proteins that harbor multiple glycation-prone amino acids. α-Synuclein (aSyn), pivotal in Parkinson's disease and synucleinopathies, has 15 lysine residues and is known to become glycated at multiple lysine sites. To understand the influence of glycation in specific regions of aSyn on its behavior, a strategy for site-specific glycated protein production is imperative. To fulfill this demand, we devised a synthetic route integrating solid-phase peptide synthesis, orthogonal protection of amino acid side-chain functionalities, and reductive amination strategies. This methodology yielded two disease-related N-terminal peptide fragments, each featuring five and six CML and CEL modifications, alongside a full-length aSyn protein containing a site-selective E46CEL modification. Our synthetic approach facilitates the broad introduction of glycation motifs at specific sites, providing a foundation for generating glycated forms of synucleinopathy-related and other disease-relevant proteins.Deutsche Forschungsgemeinschaft https://doi.org/10.13039/50110000165
The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis
Abstract Background Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinsonâs disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. Methods Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFATâs role in neuronal degeneration induced by aSyn-O. Results aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. Conclusions For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies