6 research outputs found
Design of modified plastic surfaces for antimicrobial applications: Impact of ionizing radiation on the physical and mechanical properties of polypropylene
Surface modification of polypropylene (PP) sheets was carried out by radiation induced graft polymer- ization of hydrophilic functional molecules such as N,N-dimethylacrylamide (DMA) and [2-methacry- loyloxy)ethyl] trimethylammonium chloride, which is a quaternary ammonium salt (QAS). Polypropylene sheets were activated prior to the grafting reaction by using electron beam radiation. The changes in morphology, crystallinity and tensile parameters like deformation and stress at yield and deformation at break of PP after irradiation were investigated. The results showed that a minor crystalline reorganization takes place during the irradiation of PP at 100 kGy. The grafting has been observed to be strongly dependent on the monomer dilution in the reaction medium. After grafting of QAS (40%) and DMA (20%) it was possible to develop highly hydrophilic surfaces (water contact angle comprised between 30 and 411). The surfaces of virgin, irradiated and grafted PP were studied using polarized optical microscopy (POM) and scanning electron microscopy (SEM). Spherical particles (i.e. polystyrene or silica beads) adhering to the modified samples were studied according to the surface parameters. Adhesion tests confirmed the strong influence of substrate type (mainly hydrophilicity and roughness) and to a lesser extent underlined the role of electrostatic interactions for the design of plastic surfaces for antimicrobial applications
Paracrine effect of vascular smooth muscle cells in the prevention of aortic aneurysm formation
AbstractObjective: Inflammation and elastinolysis are observed in the media of abdominal aortic aneurysms (AAAs) where vascular smooth muscle cell (VSMC) density is decreased. In contrast, elastin and VSMCs are preserved in the noninflammatory media of stenotic atherosclerotic lesions. We have tested the hypothesis that VSMCs exert a protective effect against inflammation and proteolysis in a model of AAA in rats, in which medial elastin degradation is driven by inflammation and matrix metalloproteinases. Method: Decellularized guinea pig aortas (xenografts) were implanted orthotopically into Fischer-344 rats and seeded with a suspension of rat VSMCs syngeneic to the rat recipient, or were infused with culture medium as a control. Diameter and elastin in the media were quantified 8 weeks after implantation. Inflammation, matrix metalloproteinase (MMP) and tissue inhibitor of matrix metalloproteinase (TIMP) expression were analyzed 1 and 2 weeks after implantation. Results: VSMC addition prevented AAA formation (mean ± standard deviation diameter increase: 198.2% ± 106.6% vs 35.3% ± 17.8%, P = .009), elastin degradation, and decreased infiltration by monocyte-macrophages. Reverse-transcriptase polymerase chain reaction, zymography and reverse zymography for MMP-2, MMP-9, TIMP-1, TIMP-2, and TIMP-3 demonstrated a shift of the proteolytic-antiproteolytic balance upon addition of VSMCs. Transcriptional changes were observed in the adventitia, although seeded VSMCs remained located in the intima. Conclusions: VSMCs exert a paracrine effect on the adventitia that participate in artery wall homeostasis against inflammation and proteolysis. Failure of this protective mechanism results in AAA formation. The understanding of the molecular mechanisms underlying VSMC protective effect may represent a new approach in the treatment of aneurysm and plaque rupture. (J Vasc Surg 2002;36:1018-26.
Outcomes of kidney transplant recipients admitted to the intensive care unit: a retrospective study of 200 patients
International audienc