4 research outputs found

    Defoliating to 12-15 leaves increases calcium concentration and decreases blossom-end rot incidence in fruit of tomato plant grown under moderate water stress

    Get PDF
    The objectives of this study were to (i) determine the optimum number of whole leaves to retain on a tomato plant for effective blossom-end rot (BER) management and (ii) explore the relationship between shoot calcium (Ca) and fruit Ca in non-defoliated plants in two different sized fruit cultivars, a large-fruited cultivar ‘Momotaro fight’ and a medium-fruited cultivar ‘Cindy sweet’. Treatments involved maintaining 18, 15 and 12 leaves on a plant. All lateral shoots were removed regularly throughout the growing period except the shoot closest to the flowering truss in the 18-leaf treatment. At the length of 10cm, these shoots were sampled for real time Ca determination using a hand held Ca2+ meter. In the plants defoliated to 18 leaves, BER was higher in ‘Momotaro fight’ at 10% compared to 2% in ‘Cindy sweet’. Fruit growth rate was significantly increased by defoliation in ‘Momotaro fight’, however no significant difference was observed among treatments in ‘Cindy sweet’. Defoliating to 12 leaves increased daily Ca transport rate by 59% and 37% in ‘Momotaro fight’ and ‘Cindy sweet’, respectively. Defoliating to 12 leaves increased the water-soluble Ca concentration in the distal part of fruit by 34% and 14% in ‘Momotaro fight’ and ‘Cindy sweet’, respectively. In the plants defoliated to 18 leaves where only old yellowish leaves were removed, a significant steady decrease was observed in the concentration of water soluble Ca in the distal part of fruit with increase in truss order. There was a significant linear relationship between water-soluble Ca concentration in the distal part of the fruit and Ca concentration in the lateral shoot of plants defoliated to 18 leaves. We conclude that under moderate water stress by root zone restriction and also certain other BER inductive conditions, defoliation to 12–15 leaves on a tomato plant should be a promising approach for decreasing BER incidence in susceptible large fruit cultivars

    Effect of Defoliation on Blossom-end Rot Incidence and Calcium Transport into Fruit of Tomato Cultivars Under Moderate Water Stress

    Get PDF
    The translocation of calcium (Ca) within the tomato plant and the causes of Ca deficiency, a factor associated with blossom-end rot (BER) in fruit, are still a matter of conjecture. The objective of this study was to determine the effect of defoliation on BER incidence and Ca transport into different size tomato fruit cultivars. Four experiments were conducted. The start and end dates for each experiment were; 14 March–2 May, 22 July–23 August, 30 August–7 October 2017, and 20 May–25 June 2018, for experiments 1, 2, 3, and 4, respectively. Five tomato cultivars including one large (‘Momotaro fight (MF)’, ≥ 200 g), three medium (‘Lui 60 (L60)’, ‘Tio cook (TC)’, and ‘Cindy sweet (CS)’, 30–80 g), and one small (‘Pepe (PP)’, ≤ 20 g) fruit cultivars, respectively, were grown under moderate water stress controlled by a combination of root zone restriction and solar mediated fertigation. Leaf area of plants was reduced by 20–30% by removing alternate leaflets on all leaves. Defoliation significantly reduced BER in all experiments. In experiment 4, no BER was observed in defoliated plants of L60 and PP, and in MF and TC, BER incidence decreased to a quarter of the control. Defoliation increased the fruit growth rate (FGR) in experiment 1, in which the temperature was the lowest, by a ratio of 1.42 and by 1.39 in experiment 4, in which the radiation was strongest and day length longest. Defoliation increased the rate of daily Ca transport into fruit (CTR) in MF, L60, TC, CS, and PP by average ratios of 1.64, 1.55, 1.35, 1.30, and 1.13, respectively. The increase in CTR in defoliated plants was highest in experiment 4 with a ratio of 1.68 followed by 1.37, 1.33, and 1.28 in experiments 1, 3, and 2, respectively. Defoliation increased both FGR and CTR and there were significant linear relationships between them. However, the degree of increase was larger in CTR than that in FGR, especially in the BER-sensitive large fruit cultivar MF, and defoliation increased the total Ca concentration in fruit accordingly. We conclude that under moderate water stress by root zone restriction and certain other BER inductive conditions, defoliation could be a promising approach to reduce BER incidence by improving Ca nutrition in susceptible large fruit cultivars
    corecore