8 research outputs found
Mitochondrial DNA Backgrounds Might Modulate Diabetes Complications Rather than T2DM as a Whole
Mitochondrial dysfunction has been implicated in rare and common forms of type 2 diabetes (T2DM). Additionally, rare mitochondrial DNA (mtDNA) mutations have been shown to be causal for T2DM pathogenesis. So far, many studies have investigated the possibility that mtDNA variation might affect the risk of T2DM, however, when found, haplogroup association has been rarely replicated, even in related populations, possibly due to an inadequate level of haplogroup resolution. Effects of mtDNA variation on diabetes complications have also been proposed. However, additional studies evaluating the mitochondrial role on both T2DM and related complications are badly needed. To test the hypothesis of a mitochondrial genome effect on diabetes and its complications, we genotyped the mtDNAs of 466 T2DM patients and 438 controls from a regional population of central Italy (Marche). Based on the most updated mtDNA phylogeny, all 904 samples were classified into 57 different mitochondrial sub-haplogroups, thus reaching an unprecedented level of resolution. We then evaluated whether the susceptibility of developing T2DM or its complications differed among the identified haplogroups, considering also the potential effects of phenotypical and clinical variables. MtDNA backgrounds, even when based on a refined haplogroup classification, do not appear to play a role in developing T2DM despite a possible protective effect for the common European haplogroup H1, which harbors the G3010A transition in the MTRNR2 gene. In contrast, our data indicate that different mitochondrial haplogroups are significantly associated with an increased risk of specific diabetes complications: H (the most frequent European haplogroup) with retinopathy, H3 with neuropathy, U3 with nephropathy, and V with renal failure
Design and methodology of the screening for CKD among older patients across Europe (SCOPE) study: A multicenter cohort observational study
Background: Decline of renal function is common in older persons and the prevalence of chronic kidney disease (CKD) is rising with ageing. CKD affects different outcomes relevant to older persons, additionally to morbidity and mortality which makes CKD a relevant health burden in this population. Still, accurate laboratory measurement of kidney function is under debate, since current creatinine-based equations have a certain degree of inaccuracy when used in the older population. The aims of the study are as follows: to assess kidney function in a cohort of 75+ older persons using existing methodologies for CKD screening; to investigate existing and innovative biomarkers of CKD in this cohort, and to align
The Gaia mission
Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai
Ten-year changes in ambulatory blood pressure: The prognostic value of ambulatory pulse pressure
Blood pressure (BP) changes and risk factors associated with pulse pressure (PP) increase in elderly people have rarely been studied using ambulatory blood pressure monitoring (ABPM). The aim is to evaluate 10-year ambulatory blood pressure (ABP) changes in older hypertensives, focusing on PP and its associations with mortality. An observational study was conducted on 119 consecutive older treated hypertensives evaluated at baseline (T0) and after 10 years (T1). Treatment adherence was carefully assessed. The authors considered clinical parameters at T1 only in survivors (n = 87). Patients with controlled ABP both at T0 and T1 were considered as having sustained BP control. Change in 24-hour PP between T0 and T1 (Δ24-hour PP) was considered for the analyses. Mean age at T0: 69.4 ± 3.7 years. Females: 57.5%. Significant decrease in 24-hour, daytime, and nighttime diastolic BP (all P < .05) coupled with an increase in 24-hour, daytime, and nighttime PP (all P < .05) were observed at T1. Sustained daytime BP control was associated with lower 24-hour PP increase than nonsustained daytime BP control (+2.23 ± 9.36 vs +7.79 ± 8.64 mm Hg; P = .037). The association between sustained daytime BP control and Δ24-hour PP remained significant even after adjusting for age, sex, and 24-hour PP at T0 (β=0.39; P = .035). Both 24-hour systolic BP and 24-hour PP at T0 predicted mortality (adjusted HR 1.07, P = .001; adjusted HR 1.25, P < .001, respectively). After ROC comparison (P = .001), 24-hour PP better predicted mortality than 24-hour systolic BP. The data confirm how ABP control affects vascular aging leading to PP increase. Both ambulatory PP and systolic BP rather than diastolic BP predict mortality in older treated hypertensives
Preserving mobility in older adults with physical frailty and sarcopenia:opportunities, challenges, and recommendations for physical activity interventions
Abstract
One of the most widely conserved hallmarks of aging is a decline in functional capabilities. Mobility loss is particularly burdensome due to its association with negative health outcomes, loss of independence and disability, and the heavy impact on quality of life. Recently, a new condition, physical frailty and sarcopenia, has been proposed to define a critical stage in the disabling cascade. Physical frailty and sarcopenia are characterized by weakness, slowness, and reduced muscle mass, yet with preserved ability to move independently. One of the strategies that have shown some benefits in combatting mobility loss and its consequences for older adults is physical activity. Here, we describe the opportunities and challenges for the development of physical activity interventions in people with physical frailty and sarcopenia. The aim of this article is to review age-related physio(patho)logical changes that impact mobility in old age and to provide recommendations and procedures in accordance with the available literature