44 research outputs found
Developing methodologies for exploring myosin-5 elasticity under strain
Motor proteins drive the movement of organelles and other types of cargo inside every eukaryotic cell type. These motors include myosins, kinesins and dyneins. Myosin-5a, a ubiquitous motor protein, has been intensively studied and its enzymatic properties and cellular functions have been described in great detail. This dimeric molecule walks processively along actin filaments, enabling it to transport a variety of cargos including mRNA, pigment granules, organelles such as the endoplasmic reticulum and endocytic vesicles. Cargos bind to the C-terminal globular tail domain of the molecule, while the N-terminal motor domain hydrolyses ATP to take regular steps on the actin filament.
The structure and enzymatic properties of myosin-5 moving processively along actin under unloaded conditions have already been well characterised. However, while pulling a cargo through the viscoelastic cytoplasm, the molecule will experience variable forces. Therefore it is important to study how these forces alter the structure and kinetic behaviour of myosin-5.
The purpose of this study was to design myosin-5 constructs that could be tethered, in a controlled manner, to actin via sequences introduced into the tail region of the molecule. The tethered motor protein is expected to ’stall’ while moving along the actin filament. In this way, the effects of strain on the myosin-5 structure and kinetics could then be investigated. This would simulate a case where inside the cell myosin-5 stalls due to strain, for example, whilst trying to move its cargo through spatially restricted areas of the actin cytoskeleton.
To find a new way to attach the tail of myosin-5 to actin, small, artificial actin-binding proteins named Adhirons were raised with phage display assay and their properties were explored. They bind to actin with high affinity and they are also useful for staining actin in cells or for attaching actin to coverslips in various motility assays. Multiple myosin-5 constructs were explored, that had either an Avi-tag or an actin-binding Adhiron at their C-terminal ends. A construct that contained the full predicted coiled-coil motif of myosin-5, could not be attached to the same actin filament via its tail as the motors were bound to. Two further constructs that have an artificial long coiled-coil tail, were cloned and expression trials are currently in progress
A Hidden Active Site in the Potential Drug Target Mycobacterium tuberculosis dUTPase Is Accessible through Small Amplitude Protein Conformational Changes
dUTPases catalyze the hydrolysis of dUTP into dUMP and pyrophosphate to maintain the proper nucleotide pool for DNA metabolism. Recent evidence suggests that dUTPases may also represent a selective drug target in mycobacteria because of the crucial role of these enzymes in maintaining DNA integrity. Nucleotide-hydrolyzing enzymes typically harbor a buried ligand-binding pocket at interdomain or intersubunit clefts, facilitating proper solvent shielding for the catalyzed reaction. The mechanism by which substrate binds this hidden pocket and product is released in dUTPases is unresolved because of conflicting crystallographic and spectroscopic data. We sought to resolve this conflict by using a combination of random acceleration molecular dynamics (RAMD) methodology and structural and biochemical methods to study the dUTPase from Mycobacterium tuberculosis In particular, the RAMD approach used in this study provided invaluable insights into the nucleotide dissociation process that reconciles all previous experimental observations. Specifically, our data suggest that nucleotide binding takes place as a small stretch of amino acids transiently slides away and partially uncovers the active site. The in silico data further revealed a new dUTPase conformation on the pathway to a relatively open active site. To probe this model, we developed the Trp21 reporter and collected crystallographic, spectroscopic, and kinetic data that confirmed the interaction of Trp21 with the active site shielding C-terminal arm, suggesting that the RAMD method is effective. In summary, our computational simulations and spectroscopic results support the idea that small loop movements in dUTPase allow the shuttlingof the nucleotides between the binding pocket and the solvent
Differential control of dNTP biosynthesis and genome integrity maintenance by dUTPases
dUTPase superfamily enzymes generate dUMP, the obligate precursor for de novo dTTP biosynthesis, from either dUTP (monofunctional dUTPase, Dut) or dCTP (bifunctional dCTP deaminase/dUTPase, Dcd:dut). In addition, the elimination of dUTP by these enzymes prevents harmful uracil incorporation into DNA. These two beneficial outcomes have been thought to be related. Here we determined the relationship between dTTP biosynthesis (dTTP/dCTP balance) and the prevention of DNA uracilation in a mycobacterial model that encodes both the Dut and Dcd:dut enzymes, and has no other ways to produce dUMP. We show that, in dut mutant¬¬¬¬¬ mycobacteria, the dTTP/dCTP balance remained unchanged, but the uracil content of DNA and the mutation rate increased in parallel with the in vitro activity-loss of Dut. Conversely, dcd:dut inactivation resulted in perturbed dTTP/dCTP balance and two-fold increased mutation rate, but did not increase the uracil content of DNA. Thus, unexpectedly, the regulation of dNTP balance and the prevention of DNA uracilation are decoupled and separately brought about by the Dcd:dut and Dut enzymes, respectively. Available evidence suggests that the discovered functional separation is conserved in humans and other organisms
Keeping Allergen Names Clear and Defined
The World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee was established in 1986 by leading allergists to standardize names given to proteins that cause IgE-mediated reactions in humans. The Sub-Committee’s objective is to assign unique names to allergens based on a critical analysis of confidentially submitted biochemical and clinical data from researchers, often prior to publication to preserve consistency. The Sub-Committee maintains and revises the database as the understanding of allergens evolves. This report summarizes recent developments that led to updates in classification of cockroach group 1 and 5 allergens to animal as well as environmental and occupational allergens. Interestingly, routes, doses, and frequency of exposure often affects allergenicity as does the biochemical properties of the proteins and similarity to self and other proteins. Information required by the Sub-Committee now is more extensive than previously as technology has improved. Identification of new allergens requires identification of the amino acid sequence and physical characteristics of the protein as well as demonstration of IgE binding from subjects verified by described clinical histories, proof of the presence of the protein in relevant exposure substances, and demonstration of biological activity (skin prick tests, activation of basophils, or mast cells). Names are assigned based on taxonomy with the abbreviation of genus and species and assignment of a number, which reflects the priority of discovery, but more often now, the relationships with homologous proteins in related species
WHO/IUIS Allergen Nomenclature: Providing a common language
A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G. Marsh developed a nomenclature based on the Linnaean taxonomy, and further established the World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee in 1986. Its stated aim was to standardize the names given to the antigens (allergens) that caused IgE-mediated allergies in humans. The Sub-Committee first published a revised list of allergen names in 1986, which continued to grow with rare publications until 1994. Between 1994 and 2007 the database was a text table online, then converted to a more readily updated website. The allergen list became the Allergen Nomenclature database (www.allergen.org), which currently includes approximately 880 proteins from a wide variety of sources. The Sub-Committee includes experts on clinical and molecular allergology. They review submissions of allergen candidates, using evidence-based criteria developed by the Sub-Committee. The review process assesses the biochemical analysis and the proof of allergenicity submitted, and aims to assign allergen names prior to publication. The Sub-Committee maintains and revises the database, and addresses continuous challenges as new “omics” technologies provide increasing data about potential new allergens. Most journals publishing information on new allergens require an official allergen name, which involves submission of confidential data to the WHO/IUIS Allergen Nomenclature Sub-Committee, sufficient to demonstrate binding of IgE from allergic subjects to the purified protein
Long-term social skills group training for children and adolescents with autism spectrum disorder: a randomized controlled trial
Social skills group training (SSGT) is widely used for intellectually able children and adolescents with autism spectrum disorder (ASD). Previous studies indicate small to moderate effects on social communication capacities. The duration of most available programs is relatively short, and extended training might lead to further improvement. This randomized controlled trial compared an extended 24-week version of the SSGT program KONTAKT with standard care. The weekly sessions gradually shifted in content from acquisition of new skills to real-world application of the acquired skills. A total of 50 participants with ASD (15 females; 35 males) aged 8–17 years were included. The study was conducted at two child and adolescent psychiatry outpatient units in Sweden. The primary outcome was the Social Responsiveness Scale–Second Edition (SRS-2) rated by parents and blinded teachers. Secondary outcomes included parent- and teacher-rated adaptive behaviors, trainer-rated global functioning and clinical severity, and self-reported child and caregiver stress. Assessments were made at baseline, posttreatment, and at 3-months follow-up. Parent-rated SRS-2 scores indicated large effects posttreatment [- 19.2; 95% CI - 29.9 to - 8.5; p < .001, effect size (ES) = 0.76], which were maintained at follow-up (- 20.7; 95% CI - 31.7 to - 9.7; p < .0001, ES = 0.82). These estimates indicate substantially larger improvement than previously reported for shorter SSGT. However, the effects on teacher-rated SRS-2 and most secondary outcomes did not reach statistical significance. Our results suggest added benefits of extended SSGT training, implying that service providers might reach better results by optimizing the delivery of SSGT
The dUTPase Enzyme Is Essential in Mycobacterium smegmatis
Thymidine biosynthesis is essential in all cells. Inhibitors of the enzymes involved in this pathway (e.g. methotrexate) are thus frequently used as cytostatics. Due to its pivotal role in mycobacterial thymidylate synthesis dUTPase, which hydrolyzes dUTP into the dTTP precursor dUMP, has been suggested as a target for new antitubercular agents. All mycobacterial genomes encode dUTPase with a mycobacteria-specific surface loop absent in the human dUTPase. Using Mycobacterium smegmatis as a fast growing model for Mycobacterium tuberculosis, we demonstrate that dUTPase knock-out results in lethality that can be reverted by complementation with wild-type dUTPase. Interestingly, a mutant dUTPase gene lacking the genus-specific loop was unable to complement the knock-out phenotype. We also show that deletion of the mycobacteria-specific loop has no major effect on dUTPase enzymatic properties in vitro and thus a yet to be identified loop-specific function seems to be essential within the bacterial cell context. In addition, here we demonstrated that Mycobacterium tuberculosis dUTPase is fully functional in Mycobacterium smegmatis as it rescues the lethal knock-out phenotype. Our results indicate the potential of dUTPase as a target for antitubercular drugs and identify a genus-specific surface loop on the enzyme as a selective target
Autistic behavior in boys with fragile X syndrome: social approach and HPA-axis dysfunction
The primary goal of this study was to examine environmental and neuroendocrine factors that convey increased risk for elevated autistic behavior in boys with Fragile X syndrome (FXS). This study involves three related analyses: (1) examination of multiple dimensions of social approach behaviors and how they vary over time, (2) investigation of mean levels and modulation of salivary cortisol levels in response to social interaction, and (3) examination of the relationship of social approach and autistic behaviors to salivary cortisol. Poor social approach and elevated baseline and regulation cortisol are discernible traits that distinguish boys with FXS and ASD from boys with FXS only and from typically developing boys. In addition, blunted cortisol change is associated with increased severity of autistic behaviors only within the FXS and ASD group. Boys with FXS and ASD have distinct behavioral and neuroendocrine profiles that differentiate them from those with FXS alone and typically developing boys
The Aqueduct
A chamber opera in three acts, The Aqueduct weaves together the enthralling sounds of Middle Eastern musical traditions, western art music and jazz to underscore the human side of the Israel-Palestine conflict. Talia is a middle-class Jew from Melbourne who has grown up with an idealistic view of Israel as her true home; 'the land of milk and honey'. Amal, a Palestinian Muslim is a single mother who lives with her young children in a squalid settlement just outside Israeli borders. The two women meet at the Aqueduct, a tourist attraction built under the 'old city' of Jerusalem during Roman times. They connect instantly, but can they rise above personal tragedy, cultural differences and bigotry