27 research outputs found
Construct Validity Of Rorschach Space Responses
Background:
The diagnostic meaning of the Space response, a Rorschach variable, is far from established. Previous studies on Rorschach Space responses suggested that different figure-ground relationships, shown in the three subtypes of Space responses (Integration, Reversal, and Fusion), could indicate different psychological processes.
Objective:
The aim of the current study was to investigate the construct validity of Space responses in a nonclinical sample by exploring the association of the three different types of Space responses with (a) the observer-rated motor, emotional, and cognitive components of aggression; and (b) the direction and emotional regulation of aggression in socially frustrating situations.
Methods:
The Rorschach Inkblot Method and the Rosenzweig Picture-Frustration Study were administered to 151 volunteers from a nonclinical community sample. The Aggression Questionnaire was administered as an observer-rated version to the participants' mothers. Correlation analyses were performed to investigate the associations between the three different Space responses, the scores reported on the Rosenzweig Picture-Frustration Study, and the observer-reported scores on the Aggression Questionnaire.
Conclusion:
This study offers support for differentiating the three types of mutually exclusive Space responses. Space reversal responses were found to be indicative of a propensity to direct aggression outward in the context of frustrating interpersonal situations, whereas Space fusion responses positively correlated with a greater amount of anger feelings and hostile thoughts associated with a deficit in anger and emotional regulation that may contribute to impair reality testing. As with previous studies, no association between S integration responses and anger or aggression was observed
Reduction of hexavalent chromium by fasted and fed human gastric fluid. I. Chemical reduction and mitigation of mutagenicity
Abstract Evaluation of the reducing capacity of human gastric fluid from healthy individuals, under fasted and fed conditions, is critical for assessing the cancer hazard posed by ingested hexavalent chromium [Cr(VI)] and for developing quantitative physiologically-based pharmacokinetic models used in risk assessment. In the present study, the patterns of Cr(VI) reduction were evaluated in 16 paired pre- and post-meal gastric fluid samples collected from 8 healthy volunteers. Human gastric fluid was effective both in reducing Cr(VI), as measured by using the s-diphenylcarbazide colorimetric method, and in attenuating mutagenicity in the Ames test. The mean (± SE) Cr(VI)-reducing ability of post-meal samples (20.4 ± 2.6 Όg Cr(VI)/mL gastric fluid) was significantly higher than that of pre-meal samples (10.2 ± 2.3 Όg Cr(VI)/mL gastric fluid). When using the mutagenicity assay, the decrease of mutagenicity produced by pre-meal and post-meal samples corresponded to reduction of 13.3 ± 1.9 and 25.6 ± 2.8 Όg Cr(VI)/mL gastric fluid, respectively. These data are comparable to parallel results conducted by using speciated isotope dilution mass spectrometry. Cr(VI) reduction was rapid, with > 70% of total reduction occurring within 1 min and 98% of reduction is achieved within 30 min with post-meal gastric fluid at pH 2.0. pH dependence was observed with decreasing Cr(VI) reducing capacity at higher pH. Attenuation of the mutagenic response is consistent with the lack of DNA damage observed in the gastrointestinal tract of rodents following administration of †180 ppm Cr(VI) for up to 90 days in drinking water. Quantifying Cr(VI) reduction kinetics in the human gastrointestinal tract is necessary for assessing the potential hazards posed by Cr(VI) in drinking water
Release of MicroRNAs into body fluids from ten organs of mice exposed to cigarette smoke
Purpose: MicroRNAs are small non-coding RNAs that regulate gene expression, thereby playing a role in a variety of physiological and pathophysiological states. Exposure to cigarette smoke extensively downregulates microRNA expression in pulmonary cells of mice, rats, and humans. Cellular microRNAs are released into body fluids, but a poor parallelism was previously observed between lung microRNAs and circulating microRNAs. The purpose of the present study was to validate the application of this epigenetic biomarker by using less invasive collection procedures. Experimental design: Using microarray analyses, we measured 1135 microRNAs in 10 organs and 3 body fluids of mice that were either unexposed or exposed to mainstream cigarette smoke for up to 8 weeks. The results obtained with selected miRNAs were validated by qPCR. Results: The lung was the main target affected by smoke (190 dysregulated miRNAs), followed by skeletal muscle (180), liver (138), blood serum (109), kidney (96), spleen (89), stomach (36), heart (33), bronchoalveolar lavage fluid (32), urine (27), urinary bladder (12), colon (5), and brain (0). Skeletal muscle, kidney, and lung were the most important sources of smoke-altered microRNAs in blood serum, urine, and bronchoalveolar lavage fluid, respectively. Conclusions: microRNA expression analysis was able to identify target organs after just 8 weeks of exposure to smoke, well before the occurrence of any detectable histopathological alteration. The present translational study validates the use of body fluid microRNAs as biomarkers applicable to human biomonitoring for mechanistic studies, diagnostic purposes, preventive medicine, and therapeutic strategies
Oxidative damage and autophagy in the human trabecular meshwork as related with ageing.
Autophagy is an intracellular lysosomal degradation process induced under stress conditions. Autophagy also plays a major role in ocular patho-physiology. Molecular aging does occur in the trabecular meshwork, the main regulator of aqueous humor outflow, and trabecular meshwork senescence is accompanied by increased oxidative stress. However, the role of autophagy in trabecular meshwork patho-physiology has not yet been examined in vivo in human ocular tissues. The purpose of the herein presented study is to evaluate autophagy occurrence in ex-vivo collected human trabecular meshwork specimens and to evaluate the relationship between autophagy, oxidative stress, and aging in this tissue. Fresh trabecular meshwork specimens were collected from 28 healthy corneal donors devoid of ocular pathologies and oxidative DNA damage, and LC3 and p62 protein expression analyzed. In a subset of 10 subjects, further to trabecular meshwork proteins, the amounts of cathepesin L and ubiquitin was analyzed by antibody microarray in aqueous humor. Obtained results demonstrate that autophagy activation, measured by LC3II/I ratio, is related with. oxidative damage occurrence during aging in human trabecular meshwork. The expression of autophagy marker p62 was lower in subjects older than 60 years as compared to younger subjects. These findings reflect the occurrence of an agedependent increase in the autophagy as occurring in the trabecular meshwork. Furthermore, we showed that aging promotes trabecular-meshwork senescence due to increased oxidative stress paralleled by autophagy increase. Indeed, both oxidative DNA damage and autophagy were more abundant in subjects older than 60 years. These findings shed new light on the role of oxidative damage and autophagy during trabecular-meshwork aging