19 research outputs found
Electroreduction of selected aliphatic chlorides at nanostructured metallic electrodes
Rosn膮ce zanieczyszczenie 艣rodowiska sta艂o si臋 przyczyn膮 intensywnych bada艅 nad znalezieniem efektywnych metod oczyszczania w贸d z substancji pochodzenia antropogenicznego. Szczeg贸lnym wyzwaniem okazuje si臋 usuwanie halogenk贸w organicznych, zwi膮zk贸w opornych na degradacj臋, a jednocze艣nie bardzo toksycznych. Zwi膮zki te s膮 powszechnie stosowane w przemy艣le, g艂贸wnie jako rozpuszczalniki. W niniejszej pracy wykorzystano niezwyk艂膮 katalityczn膮 aktywno艣膰 Ag i Au w procesie elektroredukcji halogenowych pochodnych w臋glowodor贸w alifatycznych. Za pomoc膮 dw贸ch metod elektrochemicznych zmodyfikowano matryc臋 z nanoporowatego tlenku glinu. Pierwsza z nich opiera si臋 na stopniowym obni偶aniu potencja艂u po anodyzacji Al w celu zmniejszenia grubo艣ci warstwy zaporowej na dnie por贸w matrycy. Warstwa zaporowa tlenku glinu uniemo偶liwia elektroosadzanie, gdy偶 nie przewodzi pr膮du elektrycznego. Druga metoda, tzw. szoku potencja艂owego polega na oddzieleniu tlenku glinu od glinu za pomoc膮 puls贸w potencja艂u o 15 V wy偶szych od potencja艂u anodyzacji glinu w mieszaninie kwasu chlorowego(VII) i etanolu (1:1 vol.). Elektrody z nanodrut贸w metalicznych (Ag, Au i Ag/Au) otrzymano w wyniku elektroosadzania w porach membrany uzyskanej metod膮 szoku potencja艂owego. Nast臋pnie okre艣lono aktywno艣膰 elektrokatalityczn膮 tak uzyskanych katod wzgl臋dem redukcji chloroformu w acetonitrylu metod膮 cyklicznej woltamperometrii.Increasing environmental pollution has caused extensive research on finding effective methods that can be used for purification of water, soil and air from antropogenic substances. A particular challenge is an efficient removal of organic halides, compounds which are highly resistant to degradation, toxic and carcinogenic. These compounds are widely used in industry, mainly as solvents, and their unavoidable accidental leakages can result in dangerous environmental pollution. In this thesis, a remarkable catalytic activity of Ag and Au toward the electroreduction of halogenated derivatives of aliphatic hydrocarbons was studied. Two electrochemical methods were used to modify nanoporous alumina templates in order to remove or reduce the thickness of the barrier layer. The insulating barrier layer prevents the electrodeposition process. The metallic nanowire electrodes (Ag, Au and Ag/Au) were synthesized by electrodeposition of metals into the pores of templates obtained by the detachment method. Next, the electrocatalytic activity of the nanostructured cathode toward the reduction of trichloromethane in acetonitryle was investigated by cyclic voltammetry
Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina
The free-standing through-hole porous alumina membranes (PAMs) were fabricated by two-step self-organized anodization of aluminum in oxalic acid followed by the subsequent voltage pulse detachment performed in an environmental-friendly solution based on HClO4 and C2H5OH. The effects of oxalic acid concentration used for anodic oxide synthesis and the chemical composition of the barrier oxide layer on the effective detachment of PAMs were studied. On the other hand, the voltage detachment conditions such as applied voltage, number of pulses, and temperature of electrolyte were tested as parameters which might affect the detachment of PAMs and their bottom side morphology. It was found that the voltage detachment process is affected by applied detachment voltage while the bottom surface morphology of detached PAMs is influenced by oxalic acid concentration used for anodization, the chemical composition of the barrier oxide layer, and the time gap between anodization and detachment (storage period). Furthermore, it was revealed that number of applied pulses and electrolyte temperature maintained during the detachment have a little effect on the morphology of PAM films. The most feasible and detailed mechanism of the voltage pulse detachment, considering the individual stages of the process, was proposed. At the beginning, the mechanism was related to an electric field assisted dissolution of oxide enhanced by its chemical dissolution induced by Joule's heating. These processes occur at the pore bottoms upon application of the voltage pulse and results in pore widening and thinning of the barrier layer. Then, after the electrical breakdown of the barrier layer, the intensive electropolishing of aluminum at the metal/oxide interface takes place