5 research outputs found

    Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.

    Get PDF
    Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries

    Molecular detection of tick-borne pathogens in canine population and Rhipicephalus sanguineus (sensu lato) ticks from southern Metro Manila and Laguna, Philippines

    No full text
    Abstract Background The tropical climate of the Philippines and the high population of dogs, particularly in cities, favors the life-cycle of the brown dog tick, Rhipicephalus sanguineus (sensu lato), a vector of several canine tick-borne pathogens (TBPs) including zoonotic Rickettsia spp. Suspected cases of infections are commonly encountered in veterinary clinics, but the specific TBPs are rarely identified. Furthermore, infection with Rickettsia is not being clinically examined in dogs. In this study, the occurrence of TBPs in blood and ticks collected from household and impounded dogs in highly populated areas of the Philippines, Metro Manila, and the nearby province of Laguna, was examined. Results A total of 248 blood samples and 157 tick samples were subjected to PCR. First, samples were screened using primers for Anaplasma/Ehrlichia spp. and Babesia/Hepatozoon spp. Those that turned positive were further subjected to species-specific PCR. Rickettsia spp. were also detected through a nested PCR. Of the 248 blood samples, 56 (22.6%) were positive for Anaplasma/Ehrlichia spp., while 19 (7.6%) were positive for Babesia/Hepatozoon spp. Species-specific PCR revealed that 61 (23.4%) had a single TBP, with Ehrlichia canis being detected in 39 (15.7%) dogs, while 14 (5.6%) dogs were positive for different combinations of two to four TBPs. Rickettsia infection was detected in 6 (2.4%) dogs. In tick samples, 8 (3.2%) were positive for Ehrlichia/Anaplasma spp., while only 1 (0.63%) was positive for Babesia/Hepatozoon spp. As in the blood samples, E. canis was the most detected, being found in 5 (2%) samples. No tick samples tested positive for Rickettsia spp. Conclusion Ehrlichia canis is the most common TBP affecting dogs in the Philippines. Co-infection with TBPs is quite common, hence testing for multiple TBPs is necessary. Through nested PCR, Rickettsia infection was detected in dogs, and to the authors’ knowledge, this study provides the first molecular evidence of Rickettsia infection in dogs in the Philippines

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore