66 research outputs found

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    Cell-type specific RNA-Seq reveals novel roles and regulatory programs for terminally differentiated Dictyostelium cells

    Get PDF
    Abstract Background A major hallmark of multicellular evolution is increasing complexity by the evolution of new specialized cell types. During Dictyostelid evolution novel specialization occurred within taxon group 4. We here aim to retrace the nature and ancestry of the novel “cup” cells by comparing their transcriptome to that of other cell types. Results RNA-Seq was performed on purified mature spore, stalk and cup cells and on vegetative amoebas. Clustering and phylogenetic analyses showed that cup cells were most similar to stalk cells, suggesting that they share a common ancestor. The affinity between cup and stalk cells was also evident from promoter-reporter studies of newly identified cell-type genes, which revealed late expression in cups of many stalk genes. However, GO enrichment analysis reveal the unexpected prominence of GTPase mediated signalling in cup cells, in contrast to enrichment of autophagy and cell wall synthesis related transcripts in stalk cells. Combining the cell type RNA-Seq data with developmental expression profiles revealed complex expression dynamics in each cell type as well as genes exclusively expressed during terminal differentiation. Most notable were nine related hssA-like genes that were highly and exclusively expressed in cup cells. Conclusions This study reveals the unique transcriptomes of the mature cup, stalk and spore cells of D. discoideum and provides insight into the ancestry of cup cells and roles in signalling that were not previously realized. The data presented in this study will serve as an important resource for future studies into the regulation and evolution of cell type specialization

    The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation

    Get PDF
    Abstract Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation

    The Dictyostelium discoideum acaA Gene Is Transcribed from Alternative Promoters during Aggregation and Multicellular Development

    Get PDF
    Background: Extracellular cAMP is a key extracellular signaling molecule that regulates aggregation, cell differentiation and morphogenesis during multi-cellular development of the social amoeba Dictyostelium discoideum. This molecule is produced by three different adenylyl cyclases, encoded by the genes acaA, acrA and acgA, expressed at different stages of development and in different structures. Methodology/Principal Findings: This article describes the characterization of the promoter region of the acaA gene, showing that it is transcribed from three different alternative promoters. The distal promoter, promoter 1, is active during the aggregation process while the more proximal promoters are active in tip-organiser and posterior regions of the structures. A DNA fragment containing the three promoters drove expression to these same regions and similar results were obtained by in situ hybridization. Analyses of mRNA expression by quantitative RT-PCR with specific primers for each of the three transcripts also demonstrated their different temporal patterns of expression. Conclusions/Significance: The existence of an aggregation-specific promoter can be associated with the use of cAMP as chemo-attractant molecule, which is specific for some Dictyostelium species. Expression at late developmental stages indicates that adenylyl cyclase A might play a more important role in post-aggregative development than previously considered

    The ATP-Binding Cassette Proteins of the Deep-Branching Protozoan Parasite Trichomonas vaginalis

    Get PDF
    The ATP binding cassette (ABC) proteins are a family of membrane transporters and regulatory proteins responsible for diverse and critical cellular process in all organisms. To date, there has been no attempt to investigate this class of proteins in the infectious parasite Trichomonas vaginalis. We have utilized a combination of bioinformatics, gene sequence analysis, gene expression and confocal microscopy to investigate the ABC proteins of T. vaginalis. We demonstrate that, uniquely among eukaryotes, T. vaginalis possesses no intact full-length ABC transporters and has undergone a dramatic expansion of some ABC protein sub-families. Furthermore, we provide preliminary evidence that T. vaginalis is able to read through in-frame stop codons to express ABC transporter components from gene pairs in a head-to-tail orientation. Finally, with confocal microscopy we demonstrate the expression and endoplasmic reticulum localization of a number of T. vaginalis ABC transporters

    The multicellularity genes of dictyostelid social amoebas

    Get PDF
    The evolution of multicellularity enabled specialization of cells, but required novel signalling mechanisms for regulating cell differentiation. Early multicellular organisms are mostly extinct and the origins of these mechanisms are unknown. Here using comparative genome and transcriptome analysis across eight uni- and multicellular amoebozoan genomes, we find that 80% of proteins essential for the development of multicellular Dictyostelia are already present in their unicellular relatives. This set is enriched in cytosolic and nuclear proteins, and protein kinases. The remaining 20%, unique to Dictyostelia, mostly consists of extracellularly exposed and secreted proteins, with roles in sensing and recognition, while several genes for synthesis of signals that induce cell-type specialization were acquired by lateral gene transfer. Across Dictyostelia, changes in gene expression correspond more strongly with phenotypic innovation than changes in protein functional domains. We conclude that the transition to multicellularity required novel signals and sensors rather than novel signal processing mechanisms

    The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays

    Get PDF
    Background: Ribosomal 5S genes are well known for the critical role they play in ribosome folding and functionality. These genes are thought to evolve in a concerted fashion, with high rates of homogenization of gene copies. However, the majority of previous analyses regarding the evolutionary process of rDNA repeats were conducted in invertebrates and plants. Studies have also been conducted on vertebrates, but these analyses were usually restricted to the 18S, 5.8S and 28S rRNA genes. The recent identification of divergent 5S rRNA gene paralogs in the genomes of elasmobranches and teleost fishes indicate that the eukaryotic 5S rRNA gene family has a more complex genomic organization than previously thought. The availability of new sequence data from lower vertebrates such as teleosts and elasmobranches enables an enhanced evolutionary characterization of 5S rDNA among vertebrates.Results: We identified two variant classes of 5S rDNA sequences in the genomes of Potamotrygonidae stingrays, similar to the genomes of other vertebrates. One class of 5S rRNA genes was shared only by elasmobranches. A broad comparative survey among 100 vertebrate species suggests that the 5S rRNA gene variants in fishes originated from rounds of genome duplication. These variants were then maintained or eliminated by birth-and-death mechanisms, under intense purifying selection. Clustered multiple copies of 5S rDNA variants could have arisen due to unequal crossing over mechanisms. Simultaneously, the distinct genome clusters were independently homogenized, resulting in the maintenance of clusters of highly similar repeats through concerted evolution.Conclusions: We believe that 5S rDNA molecular evolution in fish genomes is driven by a mixed mechanism that integrates birth-and-death and concerted evolution

    Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets

    Get PDF
    Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13-14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential "universal" targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK

    Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

    Full text link
    corecore