70 research outputs found
Proton strangeness form factors in (4,1) clustering configurations
We reexamine a recent result within a nonrelativistic constituent quark model
(NRCQM) which maintains that the uuds\bar s component in the proton has its
uuds subsystem in P state, with its \bar s in S state (configuration I). When
the result are corrected, contrary to the previous result, we find that all the
empirical signs of the form factors data can be described by the lowest-lying
uuds\bar s configuration with \bar s in P state that has its uuds subsystem in
state (configuration II). Further, it is also found that the removal of the
center-of-mass (CM) motion of the clusters will enhance the contributions of
the transition current considerably. We also show that a reasonable description
of the existing form factors data can be obtained with a very small probability
P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the
agreement of our prediction with the data for G_A^s at low-q^2 region can be
markedly improved by a small admixture of configuration I. It is also found
that by not removing CM motion, P_{s\bar s} would be overestimated by about a
factor of four in the case when transition dominates over direct currents.
Then, we also study the consequence of a recent estimate reached from analyzing
the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9%
which would lead to a large size for the five-quark (5q) system, as well as a
small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1
GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems
in Physics 2011 in Seoul, South Korea, 22-26 August 201
Strange form factors and Chiral Perturbation Theory
We review the contributions of Chiral Perturbation Theory to the theoretical
understanding or not-quite-yet-understanding of the nucleon matrix elements of
the strange vector current.Comment: 4 pages, 6 figures, presented at the International Workshop on Parity
Violation and Hadronic Structure (PAVI04), Grenoble, France, 8-11 Jun 200
Strange nucleon form factors in the perturbative chiral quark model
We apply the perturbative chiral quark model at one loop to calculate the
strange form factors of the nucleon. A detailed numerical analysis of the
strange magnetic moments and radii of the nucleon, and also the momentum
dependence of the form factors is presented.Comment: 18 pages, 6 figure
Don't Forget to Measure
This talk explores our lack of knowledge of the strange quark contribution to
the nucleon spin, . Data on from inclusive and
semi-inclusive polarized deep-inelastic scattering will be reviewed, followed
by a discussion of how the ongoing program of parity-violating elastic
electron-nucleon scattering experiments, that seek out the strange
electromagnetic form factors of the nucleon, need to have an estimate for the
strange axial form factor to carry out that program, and how the value of
extracted from the DIS experiments has filled that role. It is shown
that elastic , , and parity-violating data can
be combined to extract the strange electric, magnetic axial form factors
simultaneously. A proposed experiment that could address this important issue
if briefly previewed.Comment: 4 pages, to appear in proceedings in PAVI04, Eur. Jour. Phy
Strange chiral nucleon form factors
We investigate the strange electric and magnetic form factors of the nucleon
in the framework of heavy baryon chiral perturbation theory to third order in
the chiral expansion. All counterterms can be fixed from data. In particular,
the two unknown singlet couplings can be deduced from the parity-violating
electron scattering experiments performed by the SAMPLE and the HAPPEX
collaborations. Within the given uncertainties, our analysis leads to a small
and positive electric strangeness radius, .
We also deduce the consequences for the upcoming MAMI A4 experiment.Comment: 7 pp, REVTeX, uses epsf, minor correction
Electroweak Radiative Corrections to Parity-Violating Electroexcitation of the
We analyze the degree to which parity-violating (PV) electroexcitation of the
resonance may be used to extract the weak neutral axial vector
transition form factors. We find that the axial vector electroweak radiative
corrections are large and theoretically uncertain, thereby modifying the
nominal interpretation of the PV asymmetry in terms of the weak neutral form
factors. We also show that, in contrast to the situation for elastic electron
scattering, the axial PV asymmetry does not vanish at the photon
point as a consequence of a new term entering the radiative corrections. We
argue that an experimental determination of these radiative corrections would
be of interest for hadron structure theory, possibly shedding light on the
violation of Hara's theorem in weak, radiative hyperon decays.Comment: RevTex, 76 page
Strange form factors in the context of SAMPLE, HAPPEX, and A4 experiments
The strange properties of the nucleon are investigated within the framework
of the SU(3) chiral quark-soliton model assuming isospin symmetry and applying
the symmetry conserving SU(3) quantization. We present the form factors
, and the electric and magnetic strange form
factors incorporating pion and kaon asymptotics. The results
show a fairly good agreement with the recent experimental data from the SAMPLE
and HAPPEX collaborations. We also present predictions for future measurements
including the A4 experiment at MAMI (Mainz).Comment: 10 pages with four figures. RevTeX4 is used. Few lines are changed.
Accepted for publication in Phys.Rev.
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
Today's View on Strangeness
There are several different experimental indications, such as the
pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest
that the nucleon wave function contains a hidden s bar s component. This is
expected in chiral soliton models, which also predicted the existence of new
exotic baryons that may recently have been observed. Another hint of hidden
strangeness in the nucleon is provided by copious phi production in various N
bar N annihilation channels, which may be due to evasions of the
Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s
bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic
scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the
International Conference on Parity Violation and Hadronic Structure,
Grenoble, June 200
The nucleon's strange electromagnetic and scalar matrix elements
Quenched lattice QCD simulations and quenched chiral perturbation theory are
used together for this study of strangeness in the nucleon. Dependences of the
matrix elements on strange quark mass, valence quark mass and momentum transfer
are discussed in both the lattice and chiral frameworks. The combined results
of this study are in good agreement with existing experimental data and
predictions are made for upcoming experiments. Possible future refinements of
the theoretical method are suggested.Comment: 24 pages, 9 figure
- …