9 research outputs found
Porous CarbonβCarbon Composite Materials Obtained by Alkaline Dehydrochlorination of Polyvinyl Chloride
Porous carbonβcarbon composite materials (PCCCM) were synthesized by the alkaline dehydrochlorination of polyvinyl chloride solutions in dimethyl sulfoxide containing the modifying additives of a nanostructured component (NC): graphite oxide (GO), reduced graphite oxide (RGO) or nanoglobular carbon (NGC), with subsequent two-step thermal treatment of the obtained polyvinyleneβNC composites (carbonization at 400 Β°C and carbon dioxide activation at 900 Β°C). The focus of the study was on the analysis and digital processing of transmission electron microscopy images to study local areas of carbon composite materials, as well as to determine the distances between graphene layers. TEM and low-temperature nitrogen adsorption studies revealed that the structure of the synthesized PCCCM can be considered as a porous carbon matrix in which either carbon nanoglobules (in the case of NGC) or carbon particles with the βcrumpled sheetβ morphology (in the case of GO or RGO used as the modifying additives) are distributed. Depending on the features of the introduced 5β7 wt.% nanostructured component, the fraction of mesopores was shown to vary from 11% to 46%, and SBETβfrom 791 to 1115 m2 gβ1. The synthesis of PCCNC using graphite oxide and reduced graphite oxide as the modifying additives can be considered as a method for synthesizing a porous carbon material with the hierarchical structure containing both the micro- and meso/macropores. Such materials are widely applied and can serve as adsorbents, catalyst supports, elements of power storage systems, etc
Temperature Dependences of Conductivity and Magnetoconductivity of Multiwall Carbon Nanotubes Annealed at Different Temperatures
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 4.2-300 K) ΠΈ ΠΌΠ°Π³Π½Π΅ΡΠΎ-
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ (Π² ΠΏΠΎΠ»ΡΡ
Π΄ΠΎ 10 ΠΊΠ ΠΏΡΠΈ 4.2 K) ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ
Π²Π½Π΅ΡΠ½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 8-10 ΠΈ 20-22 Π½ΠΌ, ΠΎΡΠΎΠΆΠΆΠ΅Π½Π½ΡΡ
ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
(1600, 2200,
2600, 2800β¦C). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π΄Π»Ρ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ
20-22 Π½ΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π° Π΄Π»Ρ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΠΏΠΎΠΏΡΠ°Π²ΠΎΠΊ ΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ²
Π² Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΌ Π±Π΅ΡΠΏΠΎΡΡΠ΄ΠΊΠΎΠΌ. ΠΠ»Ρ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 8-
10 Π½ΠΌ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½Π°Ρ ΠΏΡΡΠΆΠΊΠΎΠ²Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΏΡΡΠΆΠΊΠ°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²ΠΊΠ»Π°Π΄
ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΠΏΠΎΠΏΡΠ°Π²ΠΎΠΊ Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, ΡΡΠΎ ΠΎΡΠΆΠΈΠ³ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΌΠ°Π³Π½Π΅ΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ. ΠΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΠ΅ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠΈ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ
Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 20-22 Π½ΠΌ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΌΠ°Π³Π½Π΅ΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ.Temperature (in range 4.2-300 K) and magnetic field (in fields up to 10 kG at 4.2 K) dependences of
the conductivity of two sets of multiwall carbon nanotubes with different average diameters (8-10 nm and
20-22 nm) heated at various temperatures (1600, 2200, 2600, 2800β¦C) were investigated. Temperature
dependences for nanotubes with average diameter 20-22 nm is typical for quantum corrections to conduc-
tivity of the systems with interaction electrons in two dimensional conductors with local disorder. For
nanotubes with average diameter 8-10 nm temperature dependences corresponds to one-dimensional variable range hopping conductivity (VRHC). The variation of annealing temperature of MWNTs influence
on the contribution of corrections to conductivity and parameters of VRHC. The magnetoconductivity of
MWNTs also depends on the annealing temperature and is less than that of highly oriented pyrographite.
Annealed MWNTs with average diameter 20-22 nm has a positive magnetoconductivity
Temperature Dependences of Conductivity and Magnetoconductivity of Multiwall Carbon Nanotubes Annealed at Different Temperatures
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 4.2-300 K) ΠΈ ΠΌΠ°Π³Π½Π΅ΡΠΎ-
ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ (Π² ΠΏΠΎΠ»ΡΡ
Π΄ΠΎ 10 ΠΊΠ ΠΏΡΠΈ 4.2 K) ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ
Π²Π½Π΅ΡΠ½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 8-10 ΠΈ 20-22 Π½ΠΌ, ΠΎΡΠΎΠΆΠΆΠ΅Π½Π½ΡΡ
ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
(1600, 2200,
2600, 2800β¦C). ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π΄Π»Ρ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ
20-22 Π½ΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½Π° Π΄Π»Ρ ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΠΏΠΎΠΏΡΠ°Π²ΠΎΠΊ ΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΡΡΠΈΡ
ΡΠ»Π΅ΠΊΡΡΠΎΠ½ΠΎΠ²
Π² Π΄Π²ΡΠΌΠ΅ΡΠ½ΡΡ
ΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ°Ρ
Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΌ Π±Π΅ΡΠΏΠΎΡΡΠ΄ΠΊΠΎΠΌ. ΠΠ»Ρ Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 8-
10 Π½ΠΌ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ΅ΡΡΠΎ ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½Π°Ρ ΠΏΡΡΠΆΠΊΠΎΠ²Π°Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΏΡΡΠΆΠΊΠ°. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²ΠΊΠ»Π°Π΄
ΠΊΠ²Π°Π½ΡΠΎΠ²ΡΡ
ΠΏΠΎΠΏΡΠ°Π²ΠΎΠΊ Π² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, ΡΡΠΎ ΠΎΡΠΆΠΈΠ³ ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π²Π»ΠΈΡΠ΅Ρ Π½Π° ΠΌΠ°Π³Π½Π΅ΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ. ΠΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΠ΅ ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΠ΅ Π½Π°Π½ΠΎΡΡΡΠ±ΠΊΠΈ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ
Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 20-22 Π½ΠΌ ΠΈΠΌΠ΅ΡΡ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΌΠ°Π³Π½Π΅ΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ.Temperature (in range 4.2-300 K) and magnetic field (in fields up to 10 kG at 4.2 K) dependences of
the conductivity of two sets of multiwall carbon nanotubes with different average diameters (8-10 nm and
20-22 nm) heated at various temperatures (1600, 2200, 2600, 2800β¦C) were investigated. Temperature
dependences for nanotubes with average diameter 20-22 nm is typical for quantum corrections to conduc-
tivity of the systems with interaction electrons in two dimensional conductors with local disorder. For
nanotubes with average diameter 8-10 nm temperature dependences corresponds to one-dimensional variable range hopping conductivity (VRHC). The variation of annealing temperature of MWNTs influence
on the contribution of corrections to conductivity and parameters of VRHC. The magnetoconductivity of
MWNTs also depends on the annealing temperature and is less than that of highly oriented pyrographite.
Annealed MWNTs with average diameter 20-22 nm has a positive magnetoconductivity
Influence of the Dielectric Matrix on the Electrical Nanocomposites Based on Oxidized Multi-Walled Carbon Nanotubes
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΎΠΊ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ (ΠΠ£ΠΠ’). Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ
ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ 4,2-293 Π) ΠΈ ΠΏΠΎΠ»Π΅Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°Π³Π½Π΅ΡΠΎΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (Π² ΠΏΠΎΠ»ΡΡ
Π΄ΠΎ 9 Π’Π» ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 10 Π) ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΠ£ΠΠ’ Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² Π½Π° ΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΠ£ΠΠ’ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
ΠΊΠΈΡΠ»ΠΎΡ Π²Π΅Π΄Π΅Ρ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΠ£ΠΠ’ Π² Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ° (ΠΠΠΠ) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ ΡΠΈΠΏΠΈΡΠ½ΠΎΠΉ Π΄Π»Ρ
ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΏΡΡΠΆΠΊΠ° Π΄Π»Ρ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ.In this paper we consider the effect of oxidative treatments on the properties of multiwalled carbon nan-
otubes (MWNT). The experimental temperature dependence of electrical conductivity (in the temperature
range 4,2-293 K) and field dependence of magnetoresistance (in fields up to 9 Tl at 10 K) of the samples
with MWCNT modified by oxidation of the surface layers, as well as the composites based on them. It
was established that the oxidation of the surface layers of MWCNTs in acid solutions leads to a change
in the temperature dependence of electrical conductivity. Introduction of MWCNTs in a dielectric matrix
of polymethylmethacrylate (PMMA) leads to the dependence of the conductivity close to that typical for
hopping conductivity with variable hopping length, three-dimensional case
Influence of the Dielectric Matrix on the Electrical Nanocomposites Based on Oxidized Multi-Walled Carbon Nanotubes
Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΎΠΊΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π±ΠΎΡΠΎΠΊ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΡ
ΡΠ³Π»Π΅ΡΠΎΠ΄Π½ΡΡ
Π½Π°Π½ΠΎΡΡΡΠ±ΠΎΠΊ (ΠΠ£ΠΠ’). Π Π°ΡΡΠΌΠΎΡΡΠ΅Π½Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ
ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ (Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ 4,2-293 Π) ΠΈ ΠΏΠΎΠ»Π΅Π²ΡΠ΅ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°Π³Π½Π΅ΡΠΎΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (Π² ΠΏΠΎΠ»ΡΡ
Π΄ΠΎ 9 Π’Π» ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 10 Π) ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΠΠ£ΠΠ’ Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΠΌΠΈ ΡΠ»ΠΎΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΎΠ² Π½Π° ΠΈΡ
ΠΎΡΠ½ΠΎΠ²Π΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΠΊΠΈΡΠ»Π΅Π½ΠΈΠ΅
ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΠ£ΠΠ’ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ°Ρ
ΠΊΠΈΡΠ»ΠΎΡ Π²Π΅Π΄Π΅Ρ ΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ. ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΠ£ΠΠ’ Π² Π΄ΠΈΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠΈΠ»ΠΌΠ΅ΡΠ°ΠΊΡΠΈΠ»Π°ΡΠ° (ΠΠΠΠ) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ, Π±Π»ΠΈΠ·ΠΊΠΎΠΉ ΠΊ ΡΠΈΠΏΠΈΡΠ½ΠΎΠΉ Π΄Π»Ρ
ΠΏΡΡΠΆΠΊΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π΄Π»ΠΈΠ½ΠΎΠΉ ΠΏΡΡΠΆΠΊΠ° Π΄Π»Ρ ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ.In this paper we consider the effect of oxidative treatments on the properties of multiwalled carbon nan-
otubes (MWNT). The experimental temperature dependence of electrical conductivity (in the temperature
range 4,2-293 K) and field dependence of magnetoresistance (in fields up to 9 Tl at 10 K) of the samples
with MWCNT modified by oxidation of the surface layers, as well as the composites based on them. It
was established that the oxidation of the surface layers of MWCNTs in acid solutions leads to a change
in the temperature dependence of electrical conductivity. Introduction of MWCNTs in a dielectric matrix
of polymethylmethacrylate (PMMA) leads to the dependence of the conductivity close to that typical for
hopping conductivity with variable hopping length, three-dimensional case
Atomistic Description of Thiostannate-Capped CdSe Nanocrystals: Retention of Four-Coordinate SnS4 Motif and Preservation of Cd-Rich Stoichiometry
Colloidal semiconductor nanocrystals (NCs) are widely studied as building blocks for novel solid-state materials. Inorganic surface functionalization, used to displace native organic capping ligands from NC surfaces, has been a major enabler of electronic solid-state devices based on colloidal NCs. At the same time, very little is known about the atomistic details of the organic-to-inorganic ligand exchange and binding motifs at the NC surface, severely limiting further progress in designing all-inorganic NCs and NC solids. Taking thiostannates (K4SnS4, K4Sn2S6, K6Sn2S7) as typical examples of chalcogenidometallate ligands and oleate-capped CdSe NCs as a model NC system, in this study we address these questions through the combined application of solution 1H NMR spectroscopy, solution and solid-state 119Sn NMR spectroscopy, far-infrared and X-ray absorption spectroscopies, elemental analysis, and by DFT modeling. We show that through the X-type oleate-to-thiostannate ligand exchange, CdSe NCs retain their Cd-rich stoichiometry, with a stoichiometric CdSe core and surface Cd adatoms serving as binding sites for terminal S atoms of the thiostannates ligands, leading to all-inorganic (CdSe)core[Cdm(Sn2S7)yK(6y-2m)]shell (taking Sn2S76- ligand as an example). Thiostannates SnS44- and Sn2S76- retain (distorted) tetrahedral SnS4 geometry upon binding to NC surface. At the same time, experiments and simulations point to lower stability of Sn2S64- (and SnS32-) in most solvents and its lower adaptability to the NC surface caused by rigid Sn2S2 rings. Β© 2015 American Chemical Society