21 research outputs found

    The range and level of impurities in CO2 streams from different carbon capture sources

    Get PDF
    For CO2 capture and storage deployment, the impact of impurities in the gas or dense phase CO2 stream arising from fossil fuel power plants, or large scale industrial emitters, is of fundamental importance to the safe and economic transportation and storage of the captured CO2. This paper reviews the range and level of impurities expected from the main capture technologies used with fossil-fuelled power plants in addition to other CO2 emission-intensive industries. Analysis is presented with respect to the range of impurities present in CO2 streams captured using pre-combustion, post-combustion and oxy-fuel technologies, in addition to an assessment of the different parameters affecting the CO2 mixture composition. This includes modes of operation of the power plant, and different technologies for the reduction and removal of problematic components such as water and acid gases (SOx/NOx). A literature review of data demonstrates that the purity of CO2 product gases from carbon capture sources is highly dependent upon the type of technology used. This paper also addresses the CO2 purification technologies available for the removal of CO2 impurities from raw oxy-fuel flue gas, such as Hg and non-condensable compounds. CO2 purities of over 99% are achievable using post-combustion capture technologies with low levels of the main impurities of N2, Ar and O2. However, CO2 capture from oxy-fuel combustion and integrated gasification combined cycle power plants will need to take into consideration the removal of non-condensables, acid gas species, and other contaminants. The actual level of CO2 purity required will be dictated by a combination of transport and storage requirements, and process economics

    Comparative assessment of gasification based coal power plants with various CO2 capture technologies producing electricity and hydrogen

    Get PDF
    Seven different types of gasification-based coal conversion processes for producing mainly electricity and in some cases hydrogen (H2), with and without carbon dioxide (CO2) capture, were compared on a consistent basis through simulation studies. The flowsheet for each process was developed in a chemical process simulation tool “Aspen Plus”. The pressure swing adsorption (PSA), physical absorption (Selexol), and chemical looping combustion (CLC) technologies were separately analyzed for processes with CO2 capture. The performances of the above three capture technologies were compared with respect to energetic and exergetic efficiencies, and the level of CO2 emission. The effect of air separation unit (ASU) and gas turbine (GT) integration on the power output of all the CO2 capture cases is assessed. Sensitivity analysis was carried out for the CLC process (electricity-only case) to examine the effect of temperature and water-cooling of the air reactor on the overall efficiency of the process. The results show that, when only electricity production in considered, the case using CLC technology has an electrical efficiency 1.3% and 2.3% higher than the PSA and Selexol based cases, respectively. The CLC based process achieves an overall CO2 capture efficiency of 99.9% in contrast to 89.9% for PSA and 93.5% for Selexol based processes. The overall efficiency of the CLC case for combined electricity and H2 production is marginally higher (by 0.3%) than Selexol and lower (by 0.6%) than PSA cases. The integration between the ASU and GT units benefits all three technologies in terms of electrical efficiency. Furthermore, our results suggest that it is favorable to operate the air reactor of the CLC process at higher temperatures with excess air supply in order to achieve higher power efficiency

    Denitrogenation (or Oxyfuel Concepts)

    No full text
    Denitrogenation or oxyfuel combustion is ,based on separation of oxygen from nitrogen before combustion. The CO2 obtained is concentrated and easy to isolate after combustion. Oxyfuel combustion has been used in different industrial applications, although technological challenges have to be met for large scale power generation. An important area of improvement of this concept is to be found in the air separation unit, with the help of new technologies like membrane separation technologies, high temperature oxygen adsorption technologies, and improved cryogenic distillation

    Denitrogenation (or Oxyfuel Concepts)

    No full text

    Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system

    No full text
    Based on the requirements of CO2 transportation and storage, non-condensable gases, such as O2, N2 and Ar should be removed from the CO2-stream captured from an oxy-fuel combustion process. For a purification process, impurities have great impacts on the design, operation and optimization through their impacts on the thermodynamic properties of CO2-streams. Study results show that the increments of impurities will make the energy consumption of purification increase; and make CO2 purity of separation product and CO2 recovery rate decrease. In addition, under the same operating conditions, energy consumptions have different sensitivities to the variation of the impurity mole fraction of feed fluids. The isothermal compression work is more sensitive to the variation of SO2; while the isentropic compression work is more sensitive to the variation of Ar. In the flash system, the energy consumption of condensation in is more sensitive to the variation of Ar; but in the distillation system, the energy consumption of condensation is more sensitive to the variation of SO2, and CO2 purity of separation is more sensitive to the variation of SO2.Thermodynamic properties Impurity impacts Purification Oxy-fuel combustion CO2 capture and storage
    corecore