185 research outputs found

    Multispectral near-IR reflectance and transillumination imaging of teeth

    Get PDF
    NIR imaging methods do not require ionizing radiation and have great potential for detecting caries lesions (tooth decay) on high-risk proximal and occlusal tooth surfaces and at the earliest stages of development. Previous in vitro and in vivo studies at 1300-nm demonstrated that high contrast reflectance and transillumination images could be acquired of caries lesions on tooth proximal and occlusal surfaces where most new decay is found. Water absorption varies markedly between 1200 and 1600-nm and the scattering properties of enamel and the underlying dentin have not been characterized in this region. Hyperspectral reflectance studies show lower reflectivity from sound enamel and dentin at NIR wavelengths with higher water absorption. The purpose of this imaging study was to determine which NIR wavelengths between 1200 and 1600-nm provide the highest contrast of demineralization or caries lesions for each of the different modes of NIR imaging, including transillumination of proximal and occlusal surfaces along with cross polarization reflectance measurements. A tungsten halogen lamp with several spectral filters and a Ge-enhanced CMOS focal plane array (FPA) sensitive from 400 to 1600-nm were used to acquire the images of caries lesions on extracted teeth. Artificial interproximal lesions were created on twelve tooth sections of 5 & 6-mm thickness that were used for transillumination imaging. Fifty-four extracted teeth with suspected occlusal lesions were also examined in both occlusal transillumination and reflectance imaging modes. Cavity preparations were also cut into whole teeth and filled with composite and used to compare the contrast between composite and enamel at NIR wavelengths. NIR wavelengths longer than 1400-nm are likely to have better performance for the transillumination of occlusal caries lesions while 1300-nm appears best for the transillumination of proximal surfaces. Loss of mobile water in enamel markedly reduced the transparency of the enamel at all NIR wavelengths. Significantly higher contrast was attained for reflectance measurements at wavelengths that have higher water absorption, namely 1460-nm. Wavelengths with higher water absorption also provided higher contrast of composite restorations

    Fluorescence-Based Methods for Detecting Caries Lesions: Systematic Review, Meta-Analysis and Sources of Heterogeneity

    Get PDF
    Background Fluorescence-based methods have been proposed to aid caries lesion detection. Summarizing and analysing findings of studies about fluorescence-based methods could clarify their real benefits. Objective We aimed to perform a comprehensive systematic review and meta-analysis to evaluate the accuracy of fluorescence-based methods in detecting caries lesions. Data Source Two independent reviewers searched PubMed, Embase and Scopus through June 2012 to identify papers/articles published. Other sources were checked to identify non-published literature. Study Eligibility Criteria, Participants and Diagnostic Methods The eligibility criteria were studies that: (1) have assessed the accuracy of fluorescence-based methods of detecting caries lesions on occlusal, approximal or smooth surfaces, in both primary or permanent human teeth, in the laboratory or clinical setting; (2) have used a reference standard; and (3) have reported sufficient data relating to the sample size and the accuracy of methods. Study Appraisal and Synthesis Methods A diagnostic 2×2 table was extracted from included studies to calculate the pooled sensitivity, specificity and overall accuracy parameters (Diagnostic Odds Ratio and Summary Receiver-Operating curve). The analyses were performed separately for each method and different characteristics of the studies. The quality of the studies and heterogeneity were also evaluated. Results Seventy five studies met the inclusion criteria from the 434 articles initially identified. The search of the grey or non-published literature did not identify any further studies. In general, the analysis demonstrated that the fluorescence-based method tend to have similar accuracy for all types of teeth, dental surfaces or settings. There was a trend of better performance of fluorescence methods in detecting more advanced caries lesions. We also observed moderate to high heterogeneity and evidenced publication bias. Conclusions Fluorescence-based devices have similar overall performance; however, better accuracy in detecting more advanced caries lesions has been observed

    The Acid Test of Fluoride: How pH Modulates Toxicity

    Get PDF
    Background: It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (FF^−). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of FF^−. Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of FF^− into cells. Here, we asked if FF^− was more toxic at low pH, as measured by increased cell stress and decreased cell function. Methodology/Principal Findings: Treatment of ameloblast-derived LS8 cells with FF^− at low pH reduced the threshold dose of FF^− required to phosphorylate stress-related proteins, PERK, eIF2α, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of FF^− dose and pH. Luciferase secretion significantly decreased within 2 hr of FF^− treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm FF^− in their drinking water exhibited increased stress-mediated phosphorylation of eIF2α in maturation stage ameloblasts (pH<6.0) as compared to secretory stage ameloblasts (pH∼7.2). Intriguingly, FF^−-treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn). In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected. Conclusions: The low pH environment of maturation stage ameloblasts facilitates the uptake of FF^−, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis

    Fluorescence devices for the detection of dental caries

    Get PDF
    BACKGROUND: Caries is one of the most prevalent and preventable conditions worldwide. If identified early enough then non‐invasive techniques can be applied, and therefore this review focusses on early caries involving the enamel surface of the tooth. The cornerstone of caries detection is a visual and tactile dental examination, however alternative methods of detection are available, and these include fluorescence‐based devices. There are three categories of fluorescence‐based device each primarily defined by the different wavelengths they exploit; we have labelled these groups as red, blue, and green fluorescence. These devices could support the visual examination for the detection and diagnosis of caries at an early stage of decay. OBJECTIVES: Our primary objectives were to estimate the diagnostic test accuracy of fluorescence‐based devices for the detection and diagnosis of enamel caries in children or adults. We planned to investigate the following potential sources of heterogeneity: tooth surface (occlusal, proximal, smooth surface or adjacent to a restoration); single point measurement devices versus imaging or surface assessment devices; and the prevalence of more severe disease in each study sample, at the level of caries into dentine. SEARCH METHODS: Cochrane Oral Health's Information Specialist undertook a search of the following databases: MEDLINE Ovid (1946 to 30 May 2019); Embase Ovid (1980 to 30 May 2019); US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov, to 30 May 2019); and the World Health Organization International Clinical Trials Registry Platform (to 30 May 2019). We studied reference lists as well as published systematic review articles. SELECTION CRITERIA: We included diagnostic accuracy study designs that compared a fluorescence‐based device with a reference standard. This included prospective studies that evaluated the diagnostic accuracy of single index tests and studies that directly compared two or more index tests. Studies that explicitly recruited participants with caries into dentine or frank cavitation were excluded. DATA COLLECTION AND ANALYSIS: Two review authors extracted data independently using a piloted study data extraction form based on the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS‐2). Sensitivity and specificity with 95% confidence intervals (CIs) were reported for each study. This information has been displayed as coupled forest plots and summary receiver operating characteristic (SROC) plots, displaying the sensitivity‐specificity points for each study. We estimated diagnostic accuracy using hierarchical summary receiver operating characteristic (HSROC) methods. We reported sensitivities at fixed values of specificity (median 0.78, upper quartile 0.90). MAIN RESULTS: We included a total of 133 studies, 55 did not report data in the 2 x 2 format and could not be included in the meta‐analysis. 79 studies which provided 114 datasets and evaluated 21,283 tooth surfaces were included in the meta‐analysis. There was a high risk of bias for the participant selection domain. The index test, reference standard, and flow and timing domains all showed a high proportion of studies to be at low risk of bias. Concerns regarding the applicability of the evidence were high or unclear for all domains, the highest proportion being seen in participant selection. Selective participant recruitment, poorly defined diagnostic thresholds, and in vitro studies being non‐generalisable to the clinical scenario of a routine dental examination were the main reasons for these findings. The dominance of in vitro studies also means that the information on how the results of these devices are used to support diagnosis, as opposed to pure detection, was extremely limited. There was substantial variability in the results which could not be explained by the different devices or dentition or other sources of heterogeneity that we investigated. The diagnostic odds ratio (DOR) was 14.12 (95% CI 11.17 to 17.84). The estimated sensitivity, at a fixed median specificity of 0.78, was 0.70 (95% CI 0.64 to 0.75). In a hypothetical cohort of 1000 tooth sites or surfaces, with a prevalence of enamel caries of 57%, obtained from the included studies, the estimated sensitivity of 0.70 and specificity of 0.78 would result in 171 missed tooth sites or surfaces with enamel caries (false negatives) and 95 incorrectly classed as having early caries (false positives). We used meta‐regression to compare the accuracy of the different devices for red fluorescence (84 datasets, 14,514 tooth sites), blue fluorescence (21 datasets, 3429 tooth sites), and green fluorescence (9 datasets, 3340 tooth sites) devices. Initially, we allowed threshold, shape, and accuracy to vary according to device type by including covariates in the model. Allowing consistency of shape, removal of the covariates for accuracy had only a negligible effect (Chi(2) = 3.91, degrees of freedom (df) = 2, P = 0.14). Despite the relatively large volume of evidence we rated the certainty of the evidence as low, downgraded two levels in total, for risk of bias due to limitations in the design and conduct of the included studies, indirectness arising from the high number of in vitro studies, and inconsistency due to the substantial variability of results. AUTHORS' CONCLUSIONS: There is considerable variation in the performance of these fluorescence‐based devices that could not be explained by the different wavelengths of the devices assessed, participant, or study characteristics. Blue and green fluorescence‐based devices appeared to outperform red fluorescence‐based devices but this difference was not supported by the results of a formal statistical comparison. The evidence base was considerable, but we were only able to include 79 studies out of 133 in the meta‐analysis as estimates of sensitivity or specificity values or both could not be extracted or derived. In terms of applicability, any future studies should be carried out in a clinical setting, where difficulties of caries assessment within the oral cavity include plaque, staining, and restorations. Other considerations include the potential of fluorescence devices to be used in combination with other technologies and comparative diagnostic accuracy studies

    Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment

    Get PDF
    Demineralised white lesions (DWLs) can appear on teeth during fixed brace treatment because of early decay around the brackets that attach the braces to the teeth. Fluoride is effective in reducing decay in susceptible individuals in the general population. Individuals receiving orthodontic treatment may be prescribed various forms of fluoride treatment. This review compares the effects of various forms of fluoride used during orthodontic treatment on the development of DWLs. This is an update of a Cochrane review first published in 2004

    Surfing the spectrum - what is on the horizon?

    Get PDF
    Diagnostic imaging techniques have evolved with technological advancements - but how far? The objective of this article was to explore the electromagnetic spectrum to find imaging techniques which may deliver diagnostic information of equal, or improved, standing to conventional radiographs and to explore any developments within radiography which may yield improved diagnostic data. A comprehensive literature search was performed using Medline, Web of Knowledge, Science Direct and PubMed Databases. Boolean Operators were used and key-terms included (not exclusively): terahertz, X-ray, ultraviolet, visible, infra-red, magnetic resonance, dental, diagnostic, caries and periodontal. Radiographic techniques are primarily used for diagnostic imaging in dentistry, and continued developments in X-ray imaging include: phase contrast, darkfield and spectral imaging. Other modalities have potential application, for example, terahertz, laser doppler and optical techniques, but require further development. In particular, infra-red imaging has regenerated interest with caries detection in vitro, due to improved quality and accessibility of cameras. Non-ionising imaging techniques, for example, infra-red, are becoming more commensurate with traditional radiographic techniques for caries detection. Nevertheless, X-rays continue to be the leading diagnostic image for dentists, with improved diagnostic potential for lower radiation dose becoming a reality
    corecore