324 research outputs found

    Nerve growth factor, mast cells and arthritis

    Get PDF
    Nerve growth factor is a well-characterized neurotrophic protein required for the survival and differentiation of a variety of neuronal cell types both in the peripheral and central nervous systems. Recent studies indicate that nerve growth factor also plays a role in cells originating in the immune system, since it is synthesized by cells of immune system lineage and its level increases during inflammatory responses. Moreover, it has been shown that cytokines such as interleukin 1β and tumor necrosis factor-α are potent inducers of nerve growth factor secretion. These studies were recently confirmed and extended by demonstrating that cells normally present in inflammatory tissues, such as mast cells and lymphocytes, express nerve growth factor receptors and are receptive to the action of nerve growth factor. The aim of the present review is to outline the current understanding of mast cells and nerve growth factor in autoimmune diseases and particularly in arthritis.Biomedical Reviews 1995; 4: 7-14

    A lithium-ion battery based on a graphene nanoflakes ink anode and a lithium iron phosphate cathode

    Full text link
    Li-ion rechargeable batteries have enabled the wireless revolution transforming global communication. Future challenges, however, demands distributed energy supply at a level that is not feasible with the current energy-storage technology. New materials, capable of providing higher energy density are needed. Here we report a new class of lithium-ion batteries based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode, we demonstrate an optimal battery performance in terms of specific capacity, i.e. 165 mAhg-1, estimated energy density of about 190 Whkg-1 and life, with a stable operation for over 80 charge-discharge cycles. We link these unique properties to the graphene nanoflake anode displaying crystalline order and high uptake of lithium at the edges, as well as to its structural and morphological optimization in relation to the overall battery composition. Our approach, compatible with any printing technologies, is cheap and scalable and opens up new opportunities for the development of high-capacity Li-ion batteries.Comment: 17 pages, 10 figure

    Introduzione

    Get PDF

    Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Get PDF
    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metalphthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the moleculemolecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K. © 2014 AIP Publishing LLC.Fil: Massimi, Lorenzo. Universita Di Roma. Departamento de Fisica; ItaliaFil: Angelucci, Marco. Universita Di Roma. Departamento de Fisica; ItaliaFil: Gargiani, Perluigi. Universita Di Roma. Departamento de Fisica; ItaliaFil: Betti, Maria Grazia. Universita Di Roma. Departamento de Fisica; ItaliaFil: Montoro, Silvia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; ArgentinaFil: Mariani, Carlo. Universita Di Roma. Departamento de Fisica; Itali

    The FPGA based trigger and data acquisition system for the CERN NA62 experiment

    Get PDF
    The main goal of the NA62 experiment at CERN is to measure the branching ratio of the ultra-rare K+ → π+vv decay, collecting about 100 events to test the Standard Model of Particle Physics. Readout uniformity of sub-detectors, scalability, efficient online selection and lossless high rate readout are key issues. The TDCB and TEL62 boards are the common blocks of the NA62 TDAQ system. TDCBs measure hit times from sub-detectors, TEL62s process and store them in a buffer, extracting only those requested by the trigger system following the matching of trigger primitives produced inside TEL62s themselves. During the NA62 Technical Run at the end of 2012 the TALK board has been used as prototype version of the L0 Trigger Processor

    Proteome analysis of human Wharton's jelly cells during in vitro expansion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human umbilical cord contains mucoid connective tissue and fibroblast-like cells. These cells named Wharton's jelly cells, (WJCs) display properties similar to mesenchymal stem cells therefore representing a rich source of primitive cells to be potentially used in regenerative medicine.</p> <p>Results</p> <p>To better understand their self-renewal and potential <it>in vitro </it>expansion capacity, a reference 2D map was constructed as a proteomic data set. 158 unique proteins were identified. More than 30% of these proteins belong to cytoskeleton compartment. We also found that several proteins including Shootin1, Adenylate kinase 5 isoenzyme and Plasminogen activator-inhibitor 2 are no longer expressed after the 2<sup>nd </sup>passage of <it>in vitro </it>replication. This indicates that the proliferative potency of these cells is reduced after the initial stage of <it>in vitro </it>growing. At the end of cellular culturing, new synthesized proteins, including, ERO1-like protein alpha, Aspartyl-tRNA synthetase and Prolyl-4-hydroxylase were identified. It is suggested that these new synthesized proteins are involved in the impairment of cellular surviving during replication and differentiation time.</p> <p>Conclusions</p> <p>Our work represents an essential step towards gaining knowledge of the molecular properties of WJCs so as to better understand their possible use in the field of cell therapy and regenerative medicine.</p

    A high-resolution TDC-based board for a fully digital trigger and data acquisition system in the NA62 experiment at CERN

    Full text link
    A Time to Digital Converter (TDC) based system, to be used for most sub-detectors in the high-flux rare-decay experiment NA62 at CERN SPS, was built as part of the NA62 fully digital Trigger and Data AcQuisition system (TDAQ), in which the TDC Board (TDCB) and a general-purpose motherboard (TEL62) will play a fundamental role. While TDCBs, housing four High Performance Time to Digital Converters (HPTDC), measure hit times from sub-detectors, the motherboard processes and stores them in a buffer, produces trigger primitives from different detectors and extracts only data related to the lowest trigger level decision, once this is taken on the basis of the trigger primitives themselves. The features of the TDCB board developed by the Pisa NA62 group are extensively discussed and performance data is presented in order to show its compliance with the experiment requirements.Comment: 6 pages, 7 figures, presented to IEEE RT 2014 Conference and I want to publish in TN

    Phase Separation and Three-site Hopping in the 2-dimensional t-J Model

    Full text link
    We study the t-J model with the inclusion of the so called three-site term which comes out from the t/U --> 0 expansion of the Hubbard model. We find that this singlet pair hopping term has no qualitative effect on the structure of the pure mean field phase diagram for nonmagnetic states. In accordance with experimental data on high-T_c materials and some numerical studies, we also find wide regions of phase coexistence whenever the coupling J is greater than a critical value J_c. We show that J_c varies linearly with the temperature T, going to zero at T=0.Comment: 10 pages, LaTex, 3 Postscript figure
    • …
    corecore