2 research outputs found

    Phenomenon of Electromagnetic Field Resonance in Metal and Dielectric Gratings and Its Possible Practical Applications

    No full text
    Calculations of the field distribution in the structure of the dielectric substrate/buffer layer/volume phase grating/analyzed medium were performed. It is shown that in the presence of a buffer layer with a low refractive index in the dielectric waveguide leads to a shift of the maximum field at the waveguide resonance into analyzed medium. As a result, the spectral and angular sensitivity of the corresponding sensor increases. Based on the waveguide equation, analytical expressions are obtained that connect the spectral and angular sensitivity of the sensor to the sensitivity of the propagation constant change due to the refractive index change of the analyzed medium. The conditions for the excitation of the resonance of surface plasmon–polariton waves in the structure with a metal or dielectric grating on a metal substrate are also given. The fields that occur at resonance for silver and gold gratings are calculated

    Resonant and Sensing Performance of Volume Waveguide Structures Based on Polymer Nanomaterials

    No full text
    Organic–inorganic photocurable nanocomposite materials are a topic of intensive research nowadays. The wide variety of materials and flexibility of their characteristics provide more freedom to design optical elements for light and neutron optics and holographic sensors. We propose a new strategy of nanocomposite application for fabricating resonant waveguide structures (RWS), whose working principle is based on optical waveguide resonance. Due to their resonant properties, RWS can be used as active tunable filters, refractive index (RI) sensors, near-field enhancers for spectroscopy, non-linear optics, etc. Our original photocurable organic–inorganic nanocomposite was used as a material for RWS. Unlike known waveguide structures with corrugated surfaces, we investigated the waveguide gratings with the volume modulation of the RI fabricated by a holographic method that enables large-size structures with high homogeneity. In order to produce thin photosensitive waveguide layers for their subsequent holographic structuring, a special compression method was developed. The resonant and sensing properties of new resonant structures were experimentally examined. The volume waveguide gratings demonstrate narrow resonant peaks with a bandwidth less than 0.012 nm. The Q-factor exceeds 50,000. The sensor based on waveguide volume grating provides detection of a minimal RI change of 1 × 10−4 RIU. Here we also present the new theoretical model that is used for analysis and design of developed RWS. Based on the proposed model, fairly simple analytical relationships between the parameters characterizing the sensor were obtained
    corecore