2 research outputs found

    Anxiogenic-like effects induced by hemopressin in rats

    No full text
    Hemopressin (PVNFKFLSH; HP) is an orally active peptide derived from rat hemoglobin alpha-chain that could act as an inverse agonist at cannabinoid type 1 receptors (CB1). Here, we aim to investigate possible behavioral effects of HP in male Wistar rats tested in the elevated plus maze (EPM), following HP intraperitoneal (i.p., 0.05 mg/kg), oral (P.O., 0.05 and 0.5 mg/kg) or intracerebroventricular (I.C.V., 3 and 10 nmol) administration. HP induced a decrease in EPM open arm exploration, indicating an anxiogenic-like effect. However, i.p. administration of HP (1 mg/kg) followed by mass spectrometry analysis of brain-peptide extracts suggested that the intact HP does not cross the blood brain barrier. I.C.V. administrated HP produced anxiogenic-like effects that were prevented by Transient Receptor Potential Vanilloid Type 1 (TRPV1) antagonists, 6-iodonordihydrocapsaicin (1 nmol) or SB366791 (1 nmol), but not by the CB1 receptor antagonist AM2S1 (0.1 and 1 nmol). Altogether, these data suggest that I.C.V. administrated HP induces anxiogenic-like effects by activating TRPV1 receptors. The similar anxiogenic effects observed after i.p. or P.O. administration could be due to HP fragment(s) crossing the blood brain barrier. The present results advance our knowledge about HP pharmacology and suggest concerns in future clinical studies129713CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP470311/2012-6;2012/17626-7; 2012/50896-8Pro-Reitoria de Pesquisa, University of Sao Paulo through Nucleo de Apoio a Pesquisa na Interface Proteolise-Sinalizacao Celular (NAPPS

    Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

    No full text
    Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here
    corecore