627 research outputs found

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Long-range angular correlations on the near and away side in p–Pb collisions at

    Get PDF

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    IN-SITU MONITORING ALUMINA DURING ALUMINIUM ELECTROLYTIC PRODUCTION

    No full text
    Alumina content in electrolysis cells for aluminum production is one of the most important and poorly controlled parameters. In order to check the current value of alumina content as well as the dissolution of alumina in industrial electrolytes (NaF-AlF3-CaF2-Al2O3), a novel electrochemical sensor was proposed. It was comprised of a carbon working electrode and a counter electrode interacting with aluminum. The sensor was easy to manufacture, and it allowed reducing the measurement error associated with back reactions at the working electrode. The novel approach was considered on an example of dissolving the alumina in the NaF-AlF3-(5 wt%)CaF2 melt ([NaF]/[AlF3] = 2.1 mol/mol) containing alumina (Al2O3) in amount of 0.69-4.51 wt% at 995 °C in conditions of natural and forced convection. It was found that the alumina solubility in the studied melt was 4.51 wt%. Depending on the initial content of alumina in the melt and convection conditions, its dissolution rate varied up to 0.36 mol/s·m3

    Lattice study of static quark-antiquark interactions in dense quark matter

    Get PDF
    In this paper we study the interactions among a static quark-antiquark pair in the presence of dense two-color quark matter with lattice simulation. To this end we compute Polyakov line correlation functions and determine the renormalized color averaged, color singlet and color triplet grand potentials. The color singlet grand potential allows us to elucidate the number of quarks induced by a static quark antiquark source, as well as the internal energy of such a pair in dense quark matter. We furthermore determine the screening length, which in the confinement phase is synonymous with the string breaking distance. The screening length is a decreasing function of baryon density, due to the possibility to break the interquark string via a scalar diquark condensate at high density. We also study the large distance properties of the color singlet grand potential i a dense medium and find that it is well described by a simple Debye screening formula, parameterized by a Debye mass and an effective coupling constant. The latter is of order of unity, i.e. even at large density two-color quark matter is a strongly correlated system.publishedVersio

    Impact of Local Composition on the Emission Spectra of InGaN Quantum-Dot LEDs

    No full text
    A possible solution for the realization of high-efficiency visible light-emitting diodes (LEDs) exploits InGaN-quantum-dot-based active regions. However, the role of local composition fluctuations inside the quantum dots and their effect of the device characteristics have not yet been examined in sufficient detail. Here, we present numerical simulations of a quantum-dot structure restored from an experimental high-resolution transmission electron microscopy image. A single InGaN island with the size of ten nanometers and nonuniform indium content distribution is analyzed. A number of two- and three-dimensional models of the quantum dot are derived from the experimental image by a special numerical algorithm, which enables electromechanical, continuum k→·p→, and empirical tight-binding calculations, including emission spectra prediction. Effectiveness of continuous and atomistic approaches are compared, and the impact of InGaN composition fluctuations on the ground-state electron and hole wave functions and quantum dot emission spectrum is analyzed in detail. Finally, comparison of the predicted spectrum with the experimental one is performed to assess the applicability of various simulation approaches

    Effect of the design of the active region of monolithic multi-color LED heterostructures on their spectra and emission efficiency

    No full text
    cited By 2International audienceThe design features of light-emitting-diode heterostructures with a monolithic InGaN/GaN active region containing several InGaN quantum wells (QWs) emitting at different wavelengths, grown by metal-organic chemical vapor deposition, are studied. It is shown that the number of emission bands can be raised to three by increasing the number of deposited InGaN QWs with different indium contents. The emission efficiency decreases by approximately 30% with increasing number of QWs at high currents. The dependences of the optical properties of the heterostructures on the number of QWs and types of barriers between the QWs (GaN layer or InGaN/GaN short-period superlattice) are analyzed. It is demonstrated that the ratio between the intensities of the emission lines widely varies with current flowing through the structure and greatly depends on the type and width of the barriers between the QWs
    • …
    corecore