61 research outputs found
Origin of volatiles emitted by Plinian mafic eruptions of the Chikurachki volcano, Kurile arc, Russia : trace element, boron and sulphur isotope constraints
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 478 (2018): 131-147, doi:10.1016/j.chemgeo.2017.10.009.Chikurachki is a 1816-m high stratovolcano on Paramushir Island, Kurile arc, Russia, which has repeatedly produced highly explosive eruptions of mafic composition. The present work is aimed at constraining the origin of volatile components (CO2, H2O, F, S, and Cl), along with B and S isotopic compositions in a series of phenocryst-hosted melt inclusions and groundmass glasses from basaltic andesite pyroclasts of the 1853, 1986, and prehistoric Plinian eruptions of the volcano. The ranges of volatile concentrations in melt inclusions (47–1580 μg/g CO2, 0.4–4.2 wt% H2O, 399–633 μg/g F, 619–3402 μg/g S and 805–1240 μg/g Cl) imply a sudden pressure release from ~ 460 through ~ 35 MPa that corresponds to ~ 1.2–16-km-depth range of magma ascent upon decompression. We conclude that rapid ascent of the volatile-rich basaltic magmas from ~ 16-km initial depth accompanied by near-surface bubble nucleation and growth, and subsequent magma fragmentation appear to be a primary reason for the Plinian character of the Chikurachki eruptions. Significant negative correlations of S with K, Zr, Nb, Ba, La, Ce, Pr (R = − 0.8 to − 0.9), no clear relationships of S with H2O, CO2 and Cl, but strong positive correlations of S/K2O with H2O/K2O, Cl/K2O and F/K2O preclude magma degassing to be the only process affecting volatile concentrations dissolved in the melt. The δ34S values of the studied inclusion and groundmass glasses range from − 1.6 to + 12.3‰, decrease with decreasing S, show significant positive correlations with H2O/K2O, Cl/K2O and F/Zr, and negative correlations with a number of incompatible trace elements. Neither open- nor close-system magma degassing can account for the observed range of δ34S. The δ11B values of the melt inclusions range from − 7.0 to + 2.4‰ with 13–23 μg/g B. The relationships of δ11B with B/K2O and B/Nb are inconsistent with magma contamination at shallow crustal depths. Linear character of 1/S vs. δ34S relationship suggests two-component mixing. The possible mixing end-members could be the magmas having similar major and trace element compositions, but strongly contrasting volatile contents and S isotopes. Based on the behaviour of fluid-mobile vs. fluid-immobile incompatible trace elements, we conclude that the subduction component likely represents a mixture of subduction sediment-derived melt with up to 60% of slab-derived fluid. Admixture of ~ 1–8% of the inferred subduction component to the depleted mantle wedge source is required to account for the compositional range of the Chikurachki melt inclusions, and ~ 0.4–10% to constrain the composition of Kurile arc mafic magmas.This work was benefited from
the NENIMF financial support of AAG during his training as a SIMS research specialist, the
NSF grant EAR 0911093 to AAG, and partially from the Russian Science Foundation grant #16-17-10145 to VSK and MEZ
Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume : a mixed-up mantle
Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 277 (2009): 514-524, doi:10.1016/j.epsl.2008.11.013.The Earth’s mantle is chemically and isotopically heterogeneous, and a component of recycled oceanic crust is generally suspected in the convecting mantle [Hofmann and White, 1982. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421-436]. Indeed, the HIMU component (high μ = 238U/204Pb), one of four isotopically distinct end-members in the Earth’s mantle, is generally attributed to relatively old (≥1-2 Ga) recycled oceanic crust in the form of eclogite/pyroxenite, e.g. [Zindler and Hart, 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci. 14, 493-571]. Although the presence of the recycled component is generally supported by element and isotopic data, little is known about its physical state at mantle depths. Here we show that the concentrations of Ni, Mn and Ca in olivine from the Canarian shield stage lavas, which can be used to asses the physical nature of the source material (peridotite versus olivine-free pyroxenite) [Sobolev et al., 2007. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412-417], correlate strongly with bulk rock Sr, Nd and Pb isotopic ratios. The most important result following from our data is that the enriched, HIMU-type (having higher 206Pb/204Pb than generally found in the other mantle endmembers) signature of the Canarian hotspot magmas was not caused by a pyroxenite/eclogite constituent of the plume but appears to have been primarily hosted by peridotite. This implies that the old (older than ~1 Ga) ocean crust, which has more evolved radiogenic isotope compositions, was stirred into/reacted with the mantle so that there is not significant eclogite left, whereas younger recycled oceanic crust with depleted MORB isotopic signature (<1 Ga) can be preserved as eclogite, which when melted can generate reaction pyroxenite.This work was supported by Wolfgang Paul Award, Alexander von Humboldt Foundation, to AVS, the Max Planck Society, DFG grants SCHM 250/64 and 82-1, HA3097/2 to HUS, KH and FH, NSF Grant EAR-9105113 to KH, Russian Basic Research Foundation and Russian Academy of Sciences
Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H2O
We report O isotopes in olivine grains (Fo89–93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11B from −11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are “mantle”-like, ‰‰ 4.8‰≤δ18O≤5.5‰ , with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than “mantle” δ18OOl values are ascribed to low-T (<300 °C) serpentinisation along inner fractures and grain boundaries of olivine phenocrysts. The measured concentrations of volatile components in the melt inclusions corrected for the effects of post-entrapment crystallisation and H2O–CO2 exsolution in inclusion shrinkage bubbles are: 286–1748 μg/g CO2, 0.2–0.86 wt.% H2O, 48–82 μg/g F, 398–699 μg/g S and 132–198 μg/g Cl. They correspond to a pressure of 86±44MPa or ∼2.5-km crustal depth of olivine crystallisation. The correlations of S and, to a lesser extent, of H2O, with highly incompatible lithophile elements and the correlation of F with Cl, but no relationships of H2O with Cl, rule out shallow depth magma degassing and/or crustal contamination. Our new δ18O olivine and volatile component data combined with the existing, highly variable δ11B values for melt inclusions also support the deep mantle origin of H2O (and probably other volatiles) in the Gorgona mafic and ultramafic magmas
Oxygen isotope heterogeneity of the mantle beneath the Canary Islands : insights from olivine phenocrysts
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 162 (2011): 349-363, doi:10.1007/s00410-010-0600-5.A relatively narrow range of oxygen isotopic ratios (δ18O = 5.05.4‰) is preserved in olivine of mantle xenoliths, mid-ocean ridge (MORB) and most ocean island basalts (OIB). The values in excess of this range are generally attributed either to the presence of a recycled component in the Earth’s mantle or to shallow level contamination processes. A viable way forward to trace source heterogeneity is to find a link between chemical (elemental and isotopic) composition of the earlier crystallized mineral phases (olivine) and the composition of their parental magmas, then using them to reconstruct the composition of source region. The Canary hotspot is one of a few that contains ~1-2 Ga old recycled ocean crust that can be traced to the core-mantle boundary using seismic tomography and whose origin is attributed to the mixing of at least three main isotopically distinct mantle components i.e., HIMU, DMM and EM. This work reports ion microprobe and single crystal laser fluorination oxygen isotope data of 148 olivine grains also analyzed for major and minor elements in the same spot. The olivines are from 20 samples resembling the most primitive shield stage picrite through alkali basalt to basanite series erupted on Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro, Canary Islands, for which shallow level contamination processes were not recognized. A broad range of δ18Oolivine values from 4.6 to 6.1‰ was obtained and explained by stable, long-term oxygen isotope heterogeneity of crystal cumulates present under different volcanoes. These cumulates are thought to have crystallized from mantle derived magmas uncontaminated at crustal depth, representing oxygen isotope heterogeneity of source region. A relationship between Ni×FeO/MgO and δ18Oolivine values found in one basanitic lava erupted on El Hierro, the westernmost island of the Canary Archipelago, was used to estimate oxygen isotope compositions of partial melts presumably originated from peridotite (HIMU-type component inherited its radiogenic isotope composition from ancient, ~12 Ga, recycled ocean crust) and pyroxenite (young, <1 Ga, recycled oceanic crust preserved as eclogite with depleted MORB-type isotopic signature) components of the Canary plume. The model calculations yield 5.2 and 5.9±0.3‰ for peridotite and pyroxenite derived melts, respectively, which appeared to correspond closely to the worldwide HIMU-type OIB and upper limit N-MORB δ18O values. This difference together with the broad range of δ18O variations found in the Canarian olivines cannot be explained by thermodynamic effects of oxygen isotopic fractionation and are believed to represent true variations in the mantle, due to oceanic crust and continental lithosphere recycling.This work was supported by the CNRS “poste rouge” grant to AG, the NSF EAR-CAREER-0844772 grant to IB and the CRPG-CNRS and at its initial stage by the DFG (grant SCHM 250/64) and the Alexander von Humboldt Foundation (Wolfgang Paul Award to A.V. Sobolev who provided access to the electron microprobe at the Max Planck Institute, Mainz, Germany)
Boron isotopic composition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia : new evidence supporting wet komatiite origin
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 312 (2011): 201–212, doi:10.1016/j.epsl.2011.09.033.A fundamental question in the genesis of komatiites is whether 30 these rocks originate
from partial melting of dry and hot mantle, 400−500°C hotter than typical sources of MORB and
OIB magmas, or if they were produced by hydrous melting of the source at much lower
temperatures, similar or only moderately higher than those known today. Gorgona Island,
Colombia, is a unique place where Phanerozoic komatiites occur and whose origin is directly
connected to the formation of the Caribbean Large Igneous Province. The genesis of Gorgona
komatiites remains controversial, mostly because of the uncertain origin of volatile components
which they appear to contain. These volatiles could equally result from shallow level magma
contamination, melting of a “damp” mantle or fluid-induced partial melting of the source due to
devolatilization of the ancient subducting plate. We have analyzed boron isotopes of olivine40
hosted melt inclusions from the Gorgona komatiites. These inclusions are characterized by
relatively high contents of volatile components and boron (0.2−1.0 wt.% H2O, 0.05−0.08 wt.%
S, 0.02−0.03 wt.% Cl, 0.6−2.0 μg/g B), displaying positive anomalies in the overall depleted,
primitive mantle (PM) normalized trace element and REE spectra ([La/Sm]n = 0.16−0.35;
[H2O/Nb]n = 8−44; [Cl/Nb]n = 27−68; [B/Nb]n = 9-30, assuming 300 μg/g H2O, 8 μg/g Cl and
0.1 μg/g B in PM; Kamenetsky et al., 2010. Composition and temperature of komatiite melts
from Gorgona Island constrained from olivine-hosted melt inclusions. Geology 38, 1003–1006).
The inclusions range in δ11B values from −11.5 to +15.6 ± 2.2‰ (1 SE), forming two distinct
trends in a δ11B vs. B-concentration diagram. Direct assimilation of seawater, seawater-derived
components, altered oceanic crust or marine sediments by ascending komatiite magma cannot
readily account for the volatile contents and B isotope variations. Alternatively, injection of <3%
of a 11B enriched fluid to the mantle source could be a plausible explanation for the δ11B range
that also may explain the H2O, Cl and B excess.Financial support
to AAG during data acquisition and manuscript preparation was provided by Northeast National
Ion Microprobe Facility (Woods Hole Oceanographic Institution, USA) and the Centre de
Recherches Pétrographiqueset Géochimiques (France). This research was also supported by the
Australian Research Council (Research Fellowship and Discovery grants to VSK). We
acknowledge partial support of the Alexander von Humboldt Foundation, Germany (F.W. Bessel
Award to VSK and Wolfgang Paul Award to A.V. Sobolev who provided access to the electron
microprobe at the Max Planck Institute, Mainz, Germany
Deep hydrous mantle reservoir provides evidence for crustal recycling before 3.3 billion years ago
Water strongly influences the physical properties of the mantle and enhances its ability to melt or convect. Its presence can also be used to trace recycling of surface reservoirs down to the deep mantle1, which makes knowledge of the water content in the Earth's interior and its evolution crucial for understanding global geodynamics. Komatiites (MgO-rich ultramafic magmas) result from a high degree of mantle melting at high pressures2 and thus are excellent probes of the chemical composition and water contents of the deep mantle. An excess of water over elements that show similar geochemical behaviour during mantle melting (for example, cerium) was recently found in melt inclusions in the most magnesium-rich olivine in 2.7-billion-year-old komatiites from Canada3 and Zimbabwe4. These data were taken as evidence for a deep hydrated mantle reservoir, probably the transition zone, in the Neoarchaean era (2.8 to 2.5 billion years ago). Here we confirm the mantle source of this water by measuring deuterium-to-hydrogen ratios in these melt inclusions and present similar data for 3.3-billion-year-old komatiites from the Barberton greenstone belt. From the hydrogen isotope ratios, we show that the mantle sources of these melts contained excess water, which implies that a deep hydrous mantle reservoir has been present in the Earth's interior since at least the Palaeoarchaean era (3.6 to 3.2 billion years ago). The reconstructed initial hydrogen isotope composition of komatiites is more depleted in deuterium than surface reservoirs or typical mantle but resembles that of oceanic crust that was initially altered by seawater and then dehydrated during subduction. Together with an excess of chlorine and depletion of lead in the mantle sources of komatiites, these results indicate that seawater-altered lithosphere recycling into the deep mantle, arguably by subduction, started before 3.3 billion years ago
Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine
Quenched tholeiitic glasses and glassy rims of tholeiitic lava flows and pillow lavas from the neovolcanic rift zone on Iceland (Reykjanes and Hengill fissure swarms) contain olivine phenocrysts (Fo87–91) with abundant primary glass inclusions. These inclusions and host glasses were analyzed by ion microprobe for boron concentrations and isotopic compositions. Inclusions are believed to represent primary or near-primary mantle melts that have not been modified at shallow levels. Boron concentrations and B/K ratios in these melt inclusions are highly variable (0.18–1.35 ppm B, B/K = 2.8 × 10−4−6.1 × 10−3), whereas their δ11B values are nearly constant (−11.3, Full-size image (<1 K)). This indicates that the Icelandic mantle is likely to have a constant boron isotope composition similar to that previously proposed for the primitive mantle (Full-size image (<1 K)). The Hengill host glasses are characterized by low concentrations of B (0.26–0.42 ppm) and δ11B values similar to melt inclusions (−11.3, Full-size image (<1 K)). In contrast, the Reykjanes host glasses have higher δ11B values (∼ −3‰) at the same relatively low concentrations of B (0.43–0.44 ppm), which are likely to be due to interactions of the ascending magmas with the crustal rocks hydrothermally altered at low temperatures by seawater-derived fluids.
Boron concentrations and B/K ratios in melt inclusions and matrix glasses correlate with TiO2, K2O and P2O5 contents, and La/Sm)n ratios. Boron contents recalculated on the basis of melt inclusion compositions for the Icelandic mantle are slightly different for the Reykjanes and Hengill areas (0.21, 1σn ± 0.05 and 0.13, 1σn ± 0.03 ppm B, respectively). This is likely to reflect the presence of zones within the Icelandic mantle variously enriched and/or depleted in boron of similar isotopic composition
Petrology and geochemistry of sideromelane glass shards from Pleistocene as layers north and south of Gran Canaria
Major elements, S, F, Cl concentrations and relative proportions of S6+ to total S were analyzed with electron microprobe in sideromelane glass shards from Pleistocene volcaniclastic sediments drilled during ODP Leg 157. Glasses are moderately to strongly evolved and represent a spectrum from alkali basalt, basanite and nephelinite through hawaiite, mugearite and tephrite to phonolitic tephrite. Measured S6+/SumS (0.03±0.98) and calculated Fe2+/Fe3+ (2.5±5.8) ratios in the melt yield preeruptive redox conditions ranging from NNO-1.4 to NNO+2.1. The morphology of the glass shards, variations of S and Cl concentrations (0.010±0.127 wt% S, 0.018±0.129 wt% Cl), calculated preeruptive temperatures (1030±1200 °C) and oxygen fugacities suggest that glasses deposited even within the same ash layers have diverse origin and may have resulted from both submarine and subaerial eruptions. Most vesicle-free glasses are characterized by high concentrations of S and represent undegassed or slightly degassed submarine lavas, whereas vesiculated glasses with low concentrations of S and Cl are strongly degassed and can be ascribed to the eruptions in shallow water or on land. Sideromelane glass shards at Sites 953 are thought to have resulted from submarine eruptions northeast of Gran Canaria, glasses at Site 954 represent mostly volcaniclastic material of shallow water submarine and subaerial eruptions on Gran Canaria and Tenerife, and glasses deposited at Site 956 resulted from submarine or explosive eruptions on Tenerife
- …