717 research outputs found
Dilogarithm Identities in Conformal Field Theory and Group Homology
Recently, Rogers' dilogarithm identities have attracted much attention in the
setting of conformal field theory as well as lattice model calculations. One of
the connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin can be
interpreted as a lift of a generator of the third integral homology of a finite
cyclic subgroup sitting inside the projective special linear group of all real matrices viewed as a {\it discrete} group. This connection
allows us to clarify a few of the assertions and conjectures stated in the work
of Nahm-Recknagel-Terhoven concerning the role of algebraic -theory and
Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related
to hyperbolic 3-manifolds as suggested but is more appropriately related to the
group manifold of the universal covering group of the projective special linear
group of all real matrices viewed as a topological group. This
also resolves the weaker version of the conjecture as formulated by Kirillov.
We end with the summary of a number of open conjectures on the mathematical
side.Comment: 20 pages, 2 figures not include
Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure
We study an isolated, perfectly reflecting, mirror illuminated by an intense
laser pulse. We show that the resulting radiation pressure efficiently
entangles a mirror vibrational mode with the two reflected optical sideband
modes of the incident carrier beam. The entanglement of the resulting
three-mode state is studied in detail and it is shown to be robust against the
mirror mode temperature. We then show how this continuous variable entanglement
can be profitably used to teleport an unknown quantum state of an optical mode
onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure
[Accepted Manuscript] A call to strengthen the global strategy against schistosomiasis and soil-transmitted helminthiasis: the time is now.
In 2001, the World Health Assembly (WHA) passed the landmark WHA 54.19 resolution for global scale-up of mass administration of anthelmintic drugs for morbidity control of schistosomiasis and soil-transmitted helminthiasis, which affect more than 1·5 billion of the world's poorest people. Since then, more than a decade of research and experience has yielded crucial knowledge on the control and elimination of these helminthiases. However, the global strategy has remained largely unchanged since the original 2001 WHA resolution and associated WHO guidelines on preventive chemotherapy. In this Personal View, we highlight recent advances that, taken together, support a call to revise the global strategy and guidelines for preventive chemotherapy and complementary interventions against schistosomiasis and soil-transmitted helminthiasis. These advances include the development of guidance that is specific to goals of morbidity control and elimination of transmission. We quantify the result of forgoing this opportunity by computing the yearly disease burden, mortality, and lost economic productivity associated with maintaining the status quo. Without change, we estimate that the population of sub-Saharan Africa will probably lose 2·3 million disability-adjusted life-years and US$3·5 billion of economic productivity every year, which is comparable to recent acute epidemics, including the 2014 Ebola and 2015 Zika epidemics. We propose that the time is now to strengthen the global strategy to address the substantial disease burden of schistosomiasis and soil-transmitted helminthiasis
Semiclassical Strings, Dipole Deformations of N=1 SYM and Decoupling of KK Modes
In this paper we investigate the recently found -deformed
Maldacena-Nunez background by studying the behavior of different semiclassical
string configurations. This background is conjectured to be dual to dipole
deformations of SYM. We compare our results to those in the pure
Maldacena-Nunez background and show that the energies of our string
configurations are higher than in the undeformed background. Thinking in the
lines of (hep-th/0505100) we argue that this is an evidence for better
decoupling of the Kaluza-Klein modes from the pure SYM theory excitations.
Moreover we are able to find a limit of the background in which the string
energy is independent of , these strings are interpreted as
corresponding to pure gauge theory effects.Comment: 31 pages, references added, new solutions in Section 7 presented, an
appendix added, to appear in JHE
Star and Planet Formation with ALMA: an Overview
Submillimeter observations with ALMA will be the essential next step in our
understanding of how stars and planets form. Key projects range from detailed
imaging of the collapse of pre-stellar cores and measuring the accretion rate
of matter onto deeply embedded protostars, to unravelling the chemistry and
dynamics of high-mass star-forming clusters and high-spatial resolution studies
of protoplanetary disks down to the 1 AU scale.Comment: Invited review, 8 pages, 5 figures; to appear in the proceedings of
"Science with ALMA: a New Era for Astrophysics". Astrophysics & Space
Science, in pres
DNA Damage Mediated S and G2 Checkpoints in Human Embryonal Carcinoma Cells
For mouse embryonic stem (ES) cells, the importance of the S and G2 cell cycle checkpoints for genomic integrity is increased by the absence of the G1 checkpoint. We have investigated ionizing radiation (IR)-mediated cell cycle checkpoints in undifferentiated and retinoic acid-differentiated human embryonal carcinoma (EC) cells. Like mouse ES cells, human EC cells did not undergo G1 arrest after IR but displayed a prominent S-phase delay followed by a G2-phase delay. In contrast, although differentiated EC cells also failed to arrest at G1-phase after IR, they quickly exited S-phase and arrested in G2-phase. In differentiated EC cells, the G2-M-phase cyclin B1/CDC2 complex was upregulated after IR, but the G1-S-phase cyclin E and the cyclin E/CDK2 complex were expressed at constitutively low levels, which could be an important factor distinguishing DNA damage responses between undifferentiated and differentiated EC cells. S-phase arrest and expression of p21 could be inhibited by 7-hydroxystaurosporine, suggesting that the ataxia-telangiectasia and Rad-3-related-checkpoint kinase 1 (ATR-CHK1), and p21 pathways might play a role in the IR-mediated S-phase checkpoint in EC cells. IR-mediated phosphorylation of ataxia-telangiectasia mutated, (CHK1), and checkpoint kinase 2 were distinctly higher in undifferentiated EC cells compared with differentiated EC cells. Combined with the prominent S and G2 checkpoints and a more efficient DNA damage repair system, these mechanisms operate together in the maintenance of genome stability for EC cells. Stem Cells 2009;27:568–57
Possible origins of macroscopic left-right asymmetry in organisms
I consider the microscopic mechanisms by which a particular left-right (L/R)
asymmetry is generated at the organism level from the microscopic handedness of
cytoskeletal molecules. In light of a fundamental symmetry principle, the
typical pattern-formation mechanisms of diffusion plus regulation cannot
implement the "right-hand rule"; at the microscopic level, the cell's
cytoskeleton of chiral filaments seems always to be involved, usually in
collective states driven by polymerization forces or molecular motors. It seems
particularly easy for handedness to emerge in a shear or rotation in the
background of an effectively two-dimensional system, such as the cell membrane
or a layer of cells, as this requires no pre-existing axis apart from the layer
normal. I detail a scenario involving actin/myosin layers in snails and in C.
elegans, and also one about the microtubule layer in plant cells. I also survey
the other examples that I am aware of, such as the emergence of handedness such
as the emergence of handedness in neurons, in eukaryote cell motility, and in
non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue.
Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in
Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec
A Helicity-Based Method to Infer the CME Magnetic Field Magnitude in Sun and Geospace: Generalization and Extension to Sun-Like and M-Dwarf Stars and Implications for Exoplanet Habitability
Patsourakos et al. (Astrophys. J. 817, 14, 2016) and Patsourakos and
Georgoulis (Astron. Astrophys. 595, A121, 2016) introduced a method to infer
the axial magnetic field in flux-rope coronal mass ejections (CMEs) in the
solar corona and farther away in the interplanetary medium. The method, based
on the conservation principle of magnetic helicity, uses the relative magnetic
helicity of the solar source region as input estimates, along with the radius
and length of the corresponding CME flux rope. The method was initially applied
to cylindrical force-free flux ropes, with encouraging results. We hereby
extend our framework along two distinct lines. First, we generalize our
formalism to several possible flux-rope configurations (linear and nonlinear
force-free, non-force-free, spheromak, and torus) to investigate the dependence
of the resulting CME axial magnetic field on input parameters and the employed
flux-rope configuration. Second, we generalize our framework to both Sun-like
and active M-dwarf stars hosting superflares. In a qualitative sense, we find
that Earth may not experience severe atmosphere-eroding magnetospheric
compression even for eruptive solar superflares with energies ~ 10^4 times
higher than those of the largest Geostationary Operational Environmental
Satellite (GOES) X-class flares currently observed. In addition, the two
recently discovered exoplanets with the highest Earth-similarity index, Kepler
438b and Proxima b, seem to lie in the prohibitive zone of atmospheric erosion
due to interplanetary CMEs (ICMEs), except when they possess planetary magnetic
fields that are much higher than that of Earth.Comment: http://adsabs.harvard.edu/abs/2017SoPh..292...89
Noise Filtering Strategies of Adaptive Signaling Networks: The Case of E. Coli Chemotaxis
Two distinct mechanisms for filtering noise in an input signal are identified
in a class of adaptive sensory networks. We find that the high frequency noise
is filtered by the output degradation process through time-averaging; while the
low frequency noise is damped by adaptation through negative feedback. Both
filtering processes themselves introduce intrinsic noises, which are found to
be unfiltered and can thus amount to a significant internal noise floor even
without signaling. These results are applied to E. coli chemotaxis. We show
unambiguously that the molecular mechanism for the Berg-Purcell time-averaging
scheme is the dephosphorylation of the response regulator CheY-P, not the
receptor adaptation process as previously suggested. The high frequency noise
due to the stochastic ligand binding-unbinding events and the random ligand
molecule diffusion is averaged by the CheY-P dephosphorylation process to a
negligible level in E.coli. We identify a previously unstudied noise source
caused by the random motion of the cell in a ligand gradient. We show that this
random walk induced signal noise has a divergent low frequency component, which
is only rendered finite by the receptor adaptation process. For gradients
within the E. coli sensing range, this dominant external noise can be
comparable to the significant intrinsic noise in the system. The dependence of
the response and its fluctuations on the key time scales of the system are
studied systematically. We show that the chemotaxis pathway may have evolved to
optimize gradient sensing, strong response, and noise control in different time
scalesComment: 15 pages, 4 figure
Bose-Einstein condensates in a one-dimensional double square well: Analytical solutions of the Nonlinear Schr\"odinger equation and tunneling splittings
We present a representative set of analytic stationary state solutions of the
Nonlinear Schr\"odinger equation for a symmetric double square well potential
for both attractive and repulsive nonlinearity. In addition to the usual
symmetry preserving even and odd states, nonlinearity introduces quite exotic
symmetry breaking solutions - among them are trains of solitons with different
number and sizes of density lumps in the two wells. We use the symmetry
breaking localized solutions to form macroscopic quantum superpositions states
and explore a simple model for the exponentially small tunneling splitting.Comment: 11 pages, 11 figures, revised version, typos and references correcte
- …