14 research outputs found

    Pore-scale Analysis of CO

    No full text
    For storage in deep saline formations, where CO2 is injected into the pore spaces of rocks previously occupied by saline groundwater (brine), relative permeability is a key input parameter for predictive models. CO2 injectivity is considered to reach the maximum value at the CO2 endpoint relative permeability when brine saturation becomes irreducible. The objective of this study is to investigate the effect of viscosity ratio, interfacial tension and wettability on relative permeability during CO2-brine drainage. A multiphase lattice Boltzmann model (LBM) is employed to numerically measure pore-scale dynamics in CO2-brine flow in the sample of Berea sandstone. CO2/brine with interfacial tension from 30 to 45 mN/m and viscosity ratio from 0.05 to 0.17 (the range of values expected for typical storage reservoirs conditions) are carried out to systematically assess the influence on the relative permeability curves. Although CO2 storage in sandstone saline aquifers is predominantly water wet, there are contradictory results as to the magnitude of the contact angle and its variation with fluid conditions. Therefore, the range of wetting conditions is studied to gain a better insight into the effect of wettability on supercritical CO2 displacement. In this study, it is observed that interfacial tension variations play a trivial impact while both of viscosity ratio and wettability are likely to have a significant effect on relative permeability curves under representative condition of storage reservoirs. We also perform a near-wellbore scale geomechanics analysis to investigate the impact of relative permeability on CO2 injectivity. The result shows that water-wet condition facilitates the CO2 injection when there is no fracture induced

    Micromechanics Digital Rock: Parameterization of Consolidation Level using a Grain Contact Model

    No full text
    The mechanical behaviour of sedimentary rocks is conditioned by the interactions at the grain-grain contacts. We present a micromechanics digital rock workflow based on a cohesive contact model and introduce a general parameterization that can capture two extreme contact behaviours: free grains and fixed grains, as well as any intermediate degree of grain consolidation. With this parametric cohesive contact model, we can simulate a wide range of sedimentary rocks, from unconsolidated to well-consolidated rocks. We present a benchmark study on several samples and compare with laboratory-measured elastic moduli to calibrate its degree of consolidation. Simulations that do not include the grain contact modelling, tend to overestimate the elastic moduli, which manifests the significance of this contribution to capture well the grain contact behaviour. To demonstrate the impact of properly capturing the degree of consolidation on the rock strength and failure pattern, we present results for numerical uniaxial compression testing. This workflow provides physics-based solution to complex grain contact behaviour, which complements laboratory core analysis, and can be useful to reveal underlying grain-scale processes governing rock mechanical behaviour

    Towards Multiscale Digital Rocks: Application of a Sub-Resolution Production Model to a multiscale Sandstone

    No full text
    Many digital rock methodologies use a direct simulation approach, where only resolved pores are accounted for. This approach limits the types of rocks that can be analyzed, excluding some types of carbonates, unconventionals, and complex sandstones from the digital rock analysis. This is due to the challenge for single scale imaging to capture the full range of relevant pore sizes present in multiscale rocks. In this paper, a physical model is presented, within the context of an established direct simulation approach, to predict the production of hydrocarbons including the contribution of sub-resolution pores. The direct simulation component of the model employs a multiphase lattice Boltzmann method to simulate multiphase fluid flow displacement in resolved pores. In the production model, the amount of hydrocarbons present in the sub-resolution pores is identified and a physical description of the production behavior is provided. This allows a relative permeability curve to be predicted for rocks where mobile hydrocarbons are present in pores smaller than the image resolution. This simplified model for the oil movement in the unresolved pore space is based on a physical interpretation of different regions marked by simulation resolution limits in a USBM wettability test curve. The proposed methodology is applied to high-resolution microCT images of a sandstone that contains pores at multiple scales, some resolved and some not resolved. To allow for benchmarking, experimental routine and special core analysis data was also obtained. Good agreement to experimental results is observed, specifically in absolute and relative permeability. The presented multiscale model has the potential to extend the classes of reservoir rocks eligible for digital rock analysis and paves the way for further advancements in the modelling of multiscale rocks, particularly unconventionals and carbonates

    Multi-scale Digital Rock: Application of a multi-scale multi-phase workflow to a Carbonate reservoir rock

    No full text
    In some of the challenging digital rock applications the trade-off between model resolution and representative elemental volume is not captured in a single resolution model satisfying the minimum requirements for both aspects. In the wide range of lithofacies found in carbonate reservoir rocks, some facies fall in this category, where large pores, ooids or vugs, are connected by small scale porous structures that could have orders of magnitude smaller pores. In these cases a multi-scale digital rock approach is needed. We recently developed an extension to a digital rock workflow that includes a way to handle sub-resolution pore structures in single phase and multi-phase flow scenarios in addition to regular resolvable pore structures. Here we present an application of this methodology to a multi-scale limestone carbonate rock. A microCT image captures the large pores for this sample, but does not resolve all the pores smaller than the pixel size. A three phase image segmentation that considers pore, solid and under-resolved pores or porous media (PM) is generated. A high resolution confocal image model is obtained for a representative region of the smaller pores or PM region. A set of constitutive relationships (namely permeability vs. porosity, capillary pressure vs saturation and relative permeability vs saturation) are obtained by simulation from the high resolution confocal model. The low resolution segmented image, a porosity distribution image, and the constitutive relationships for the PM are input in an extended LBM multi-scale multi-phase solver. First we present results for absolute permeability and show a parametric study on PM permeability. The model recovers the expected behaviour when the PM regions are considered pore or solid. A consistent value of permeability with experiments is obtained when we use the PM permeability from the high resolution model. To demonstrate the multi-phase behaviour, we present results for capillary pressure imbibition multi-scale simulations. Here a small model for a dual porosity system is created in order to compare single scale results with the multi-scale solver. Finally, capillary imbibition results for the whole domain are shown and different wettability scenario results are discussed. This application illustrates a novel multi-scale simulation approach that can address a long standing problem in digital rock

    Bibliography

    No full text
    corecore