127 research outputs found

    Optic flow stabilizes flight in ruby-throated hummingbirds

    Get PDF
    Flying birds rely on visual cues for retinal image stabilization by negating rotation-induced optic flow, the motion of the visual panorama across the retina, through corrective eye and head movements. In combination with vestibular and proprioceptive feedback, birds may also use visual cues to stabilize their body during flight. Here, we test whether artificially induced wide-field motion generated through projected visual patterns elicits maneuvers in body orientation and flight position, in addition to stabilizing vision. To test this hypothesis, we present hummingbirds flying freely within a 1.2 m cylindrical visual arena with a virtual surround rotated at different speeds about its vertical axis. The birds responded robustly to these visual perturbations by rotating their heads and bodies with the moving visual surround, and by adjusting their flight trajectories, following the surround. Thus, similar to insects, hummingbirds appear to use optic flow cues to control flight maneuvers as well as to stabilize their visual inputs

    Scaling of Terrestrial Support: Differing Solutions to Mechanical Constraints of Size

    Get PDF
    Terrestrial animals and plants span an enormous size range, and yet even distantly related groups are constructed of similar materials (e.g., bone, wood, muscle, and tendon). As with many physiological processes, evolutionary and ontogenetic changes in size impose constraints of scale on the mechanical design and function of skeletal support systems that are built of materials having similar properties. Adequate design requires that the capacity of skeletal elements (and muscles) for force transmission safely exceeds the levels required for biological support and movement. This is the case when the force transmitted per unit cross-sectional area of the material, defined as a mechanical stress (= F/,4, e.g., N/mm2), does not exceed the material's strength (the maximum stress that the material can withstand before faihrre). Clearly, larger structures can support larger forces more safely. The important design consideration, however, is whether changes in force requirements are matched by comparable changes in tissue cross-sectional area in order to keep maximal stresses and, thus, safety factors (defined as failure stress/peak functional stress) constant as size changes. Scale-invariant features (bone strength, timber strength, and peak muscle stress), therefore, require size-dependent changes in other features if the functional integrity of support systems is to be maintained over a broad size range (see also Li this volume). What are the features of terrestrial skeletal support systems that vary in a regular way with changes in size

    Walking and Running in the Red-Legged Running Frog, Kassina Maculata

    Get PDF
    Although most frog species are specialized for jumping or swimming, Kassina maculata (red-legged running frog) primarily uses a third type of locomotion during which the hindlimbs alternate. In the present study, we examined Kassina\u27s distinct locomotory mode to determine whether these frogs walk or run and how their gait may change with speed. We used multiple methods to distinguish between terrestrial gaits: the existence or absence of an aerial phase, duty factor, relative footfall patterns and the mechanics of the animal\u27s center of mass (COM). To measure kinematic and kinetic variables, we recorded digital video as the animals moved over a miniature force platform (N=12 individuals). With respect to footfall patterns, the frogs used a single gait and walked at all speeds examined. Duty factor always exceeded 0.59. Based on COM mechanics, however, the frogs used both walking and running gaits. At slower speeds, the fluctuations in the horizontal kinetic energy (Ek) and gravitational potential energy (Ep) of the COM were largely out of phase, indicating a vaulting or walking gait. In most of the trials, Kassina used a combined gait at intermediate speeds, unlike cursorial animals with distinct gait transitions. This combined gait, much like a mammalian gallop, exhibited the mechanics of both vaulting and bouncing gaits. At faster speeds, the Ek and Ep of Kassina\u27s COM were more in phase, indicating the use of a bouncing or running gait. Depending on the definition used to distinguish between walking and running, Kassina either only used a walking gait at all speeds or used a walking gait at slower speeds but then switched to a running gait as speed increased

    In Vivo muscle force-length behavior during steady-speed hopping in tammar wallabies

    Get PDF
    © The Company of BiologistsModerate to large macropodids can increase their speed while hopping with little or no increase in energy expenditure. This has been interpreted by some workers as resulting from elastic energy savings in their hindlimb tendons. For this to occur, the muscle fibers must transmit force to their tendons with little or no length change. To test whether this is the case, we made in vivo measurements of muscle fiber length change and tendon force in the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies Macropus eugenii as they hopped at different speeds on a treadmill. Muscle fiber length changes were less than +/-0.5 mm in the plantaris and +/-2.2 mm in the lateral gastrocnemius, representing less than 2 % of total fiber length in the plantaris and less than 6 % in the lateral gastrocnemius, with respect to resting length. The length changes of the plantaris fibers suggest that this occurred by means of elastic extension of attached cross-bridges. Much of the length change in the lateral gastrocnemius fibers occurred at low force early in the stance phase, with generally isometric behavior at higher forces. Fiber length changes did not vary significantly with increased hopping speed in either muscle (P>0.05), despite a 1. 6-fold increase in muscle-tendon force between speeds of 2.5 and 6.0 m s-1. Length changes of the PL fibers were only 7+/-4 % and of the LG fibers 34+/-12 % (mean +/- S.D., N=170) of the stretch calculated for their tendons, resulting in little net work by either muscle (plantaris 0.01+/-0.03 J; gastrocnemius -0.04+/-0.30 J; mean +/- s.d. ). In contrast, elastic strain energy stored in the tendons increased with increasing speed and averaged 20-fold greater than the shortening work performed by the two muscles. These results show that an increasing amount of strain energy stored within the hindlimb tendons is usefully recovered at faster steady hopping speeds, without being dissipated by increased stretch of the muscles' fibers. This finding supports the view that tendon elastic saving of energy is an important mechanism by which this species is able to hop at faster speeds with little or no increase in metabolic energy expenditure.Andrew A. Biewener, David D. Konieczynski and Russell V. Baudinett
    • …
    corecore