872 research outputs found
Gendered Differences in the Predictors of Sexual Initiation Among Young Adults in Cebu, Philippines
PurposeSocial environment and family context exert substantial influence on adolescent sexual behaviors. These influences are especially important to examine in countries undergoing rapid demographic and social change. This study employs unique, intergenerational and longitudinal data (1998-2009) to examine the effects of parental, peer, and household influences on sexual initiation among young adults in Cebu, Philippines.MethodsIntergenerational and longitudinal cohort data from the 1998 Cebu Longitudinal Health and Nutrition Survey (CLHNS) are analyzed to examine the effects of household, peer, family, and young adults' sexual attitudes on age at first sex by 2009 among young men and women. Gender-stratified Cox proportional hazards models and Cox regression models are used to model time to first sex.ResultsHousehold, family, peer, and individual characteristics have disparate influences on sexual initiation among Filipino boys and girls. Boys' sexual initiation was positively associated with urbanicity, household wealth, and the presence of a family member working abroad, whereas for girls, these variables had no significant effects. Unique effects were also found for girls-mother's education was negatively associated, and girls' number of siblings was positively associated, with higher hazards of sex. Additionally, the effects of some variables on the occurrence of first sex differed across time, indicating that boys and girls may be differentially influenced by contextual characteristics across adolescence.ConclusionsAmid substantial sociodemographic changes and persistence of traditional gender norms, this study highlights the importance of examining the unique influences and intersections of gender and context on sexual initiation in the Philippines
Magnetic frustration and spontaneous rotational symmetry breaking in PdCrO2
In the triangular layered magnet PdCrO2 the intralayer magnetic interactions
are strong, however the lattice structure frustrates interlayer interactions.
In spite of this, long-range, 120 antiferromagnetic order condenses at
~K. We show here through neutron scattering measurements under
in-plane uniaxial stress and in-plane magnetic field that this occurs through a
spontaneous lifting of the three-fold rotational symmetry of the nonmagnetic
lattice, which relieves the interlayer frustration. We also show through
resistivity measurements that uniaxial stress can suppress thermal magnetic
disorder within the antiferromagnetic phase.Comment: 9 pages, 9 figure
Environmental and Genetic Variables Influencing Mitochondrial Health and Parkinson’s Disease Penetrance
There is strong evidence that impairment of mitochondrial function plays a key role in the pathogenesis of PD. The two key PD genes related to mitochondrial function are Parkin (PARK2) and PINK1 (PARK6), and also mutations in several other PD genes, including SNCA, LRRK2, DJ1, CHCHD2, and POLG, have been shown to induce mitochondrial stress. Many mutations are clearly pathogenic in some patients while carriers of other mutations either do not develop the disease or show a delayed onset, a phenomenon known as reduced penetrance. Indeed, for several mutations in autosomal dominant PD genes, penetrance is markedly reduced, whereas heterozygous carriers of recessive mutations may predispose to PD in a dominant manner, although with highly reduced penetrance, if additional disease modifiers are present. The identification and validation of such modifiers leading to reduced penetrance or increased susceptibility in the case of heterozygous carriers of recessive mutations are relevant for a better understanding of mechanisms contributing to disease onset. We discuss genetic and environmental factors as well as mitochondrial DNA alterations and protein-protein interactions, all involved in mitochondrial function, as potential causes to modify penetrance of mutations in dominant PD genes and to determine manifestation of heterozygous mutations in recessive PD genes
Field-temperature phase diagram and entropy landscape of CeAuSb2
We report a field-temperature phase diagram and an entropy map for the heavy-fermion compound CeAuSb2. CeAuSb2 orders antiferromagnetically below TN=6.6 K and has two metamagnetic transitions, at 2.8 and 5.6 T. The locations of the critical end points of the metamagnetic transitions, which may play a strong role in the putative quantum criticality of CeAuSb2 and related compounds, are identified. The entropy map reveals an apparent entropy balance with Fermi-liquid behavior, implying that above the Néel transition the Ce moments are incorporated into the Fermi liquid. High-field data showing that the magnetic behavior is remarkably anisotropic are also reported
Heisenberg spins on an anisotropic triangular lattice : PdCrO2 under uniaxial stress
Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council under Expt. No. RB1820290. Financial support from the Deutsche Forschungsgemeinschaft through SFB 1143 (Project ID 247310070) and the Max Planck Society is gratefully acknowledged. RW acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Condensed Matter Physics (CDT-CMP), Grant No. EP/L015544/1.When Heisenberg spins interact antiferromagnetically on a triangular lattice and nearest-neighbor interactions dominate, the ground state is 120° antiferromagnetism. In this work, we probe the response of this state to lifting the triangular symmetry, through investigation of the triangular antiferromagnet PdCrO2 under uniaxial stress by neutron diffraction and resistivity measurements. The periodicity of the magnetic order is found to change rapidly with applied stress; the rate of change indicates that the magnetic anisotropy is roughly forty times the stress-induced bond length anisotropy. At low stress, the incommensuration period becomes extremely long, on the order of 1000 lattice spacings; no locking of the magnetism to commensurate periodicity is detected. Separately, the magnetic structure is found to undergo a first-order transition at a compressive stress of ∼0.4 GPa, at which the interlayer ordering switches from a double-to a single-q structure.Publisher PDFPeer reviewe
Evaluation of the role of STAP1 in Familial Hypercholesterolemia
Familial hypercholesterolemia (FH) is characterised by elevated serum levels of low-density lipoprotein cholesterol (LDL-C) and a substantial risk for cardiovascular disease. The autosomal-dominant FH is mostly caused by mutations in LDLR (low density lipoprotein receptor), APOB (apolipoprotein B), and PCSK9 (proprotein convertase subtilisin/kexin). Recently, STAP1 has been suggested as a fourth causative gene. We analyzed STAP1 in 75 hypercholesterolemic patients from Berlin, Germany, who are negative for mutations in canonical FH genes. In 10 patients with negative family history, we additionally screened for disease causing variants in LDLRAP1 (low density lipoprotein receptor adaptor protein 1), associated with autosomal-recessive hypercholesterolemia. We identified one STAP1 variant predicted to be disease causing. To evaluate association of serum lipid levels and STAP1 carrier status, we analyzed 20 individuals from a population based cohort, the Cooperative Health Research in South Tyrol (CHRIS) study, carrying rare STAP1 variants. Out of the same cohort we randomly selected 100 non-carriers as control. In the Berlin FH cohort STAP1 variants were rare. In the CHRIS cohort, we obtained no statistically significant differences between carriers and non-carriers of STAP1 variants with respect to lipid traits. Until such an association has been verified in more individuals with genetic variants in STAP1, we cannot estimate whether STAP1 generally is a causative gene for FH
Segmented Aperture Interferometric Nulling Testbed (SAINT) II: Component Systems Update
"This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interfer-ometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror withthe Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatoriesneeded to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars inthe quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNCwavefront control optics and mechanisms towards repeating narrowband results are described. A narrative isprovided for the design of new optical components aimed at enabling broadband performance. Initial work withthe hardware and software interface for controlling the segmented telescope mirror is also presented.
- …