30 research outputs found

    Early surgical removal of membranous ventricular septal device might allow recovery of atrio-ventricular block.

    No full text
    Complete atrio-ventricular heart block is a well-reported complication after percutaneous closure of perimembranous ventricular septal defects. The incidence seems to be higher than after surgical closure. Early heart block can be transient and pacemaker implantation is not always required. Late heart block is also described. We describe two patients who both presented with complete atrio-ventricular block 4 days after device insertion. Surgical device removal was followed by a rapid and complete recovery of the atrio-ventricular conduction. Surgical device removal should be considered in cases of subacute heart block, as removal might result in recovery of the atrio-ventricular conduction

    Echocardiography as a Screening Test for Myocardial Scarring in Children with Hypertrophic Cardiomyopathy

    No full text
    Introduction. Hypertrophic cardiomyopathy (HCM) is burdened with morbidity and mortality including tachyarrhythmias and sudden cardiac death. These complications are attributed in part to the formation of proarrhythmic scars in the myocardium. The presence of extensive LGE is a risk factor for adverse outcomes in HCM. Late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (cMRI) is the standard for the noninvasive evaluation of myocardial scars. However, echocardiography represents an attractive screening tool for myocardial scarring. The aim of this study was to compare the suitability of echocardiography to detect myocardial scars to the standard of cMRI-LGE. Methods. The cMRI studies and echocardiograms from 56 consecutive children with HCM were independently evaluated for the presence of cMRI-LGE and echocardiographic evidence of scarring by expert readers. Results. Echocardiography had a high sensitivity (93%) and negative predictive value (94%) in comparison to LGE. The false positive rate was high, leading to a low specificity (37%) and a low positive predictive value (35%). Conclusions. Given the poor specificity and positive predictive value, echocardiography is not a suitable screening test for the presence of myocardial scarring in children with HCM. However, children without echocardiographic evidence of myocardial scarring may not need to undergo cardiac magnetic resonance imaging to “rule in” LGE

    Echocardiography as a Screening Test for Myocardial Scarring in Children with Hypertrophic Cardiomyopathy

    No full text
    Introduction. Hypertrophic cardiomyopathy (HCM) is burdened with morbidity and mortality including tachyarrhythmias and sudden cardiac death. These complications are attributed in part to the formation of proarrhythmic scars in the myocardium. The presence of extensive LGE is a risk factor for adverse outcomes in HCM. Late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (cMRI) is the standard for the noninvasive evaluation of myocardial scars. However, echocardiography represents an attractive screening tool for myocardial scarring. The aim of this study was to compare the suitability of echocardiography to detect myocardial scars to the standard of cMRI-LGE. Methods. The cMRI studies and echocardiograms from 56 consecutive children with HCM were independently evaluated for the presence of cMRI-LGE and echocardiographic evidence of scarring by expert readers. Results. Echocardiography had a high sensitivity (93%) and negative predictive value (94%) in comparison to LGE. The false positive rate was high, leading to a low specificity (37%) and a low positive predictive value (35%). Conclusions. Given the poor specificity and positive predictive value, echocardiography is not a suitable screening test for the presence of myocardial scarring in children with HCM. However, children without echocardiographic evidence of myocardial scarring may not need to undergo cardiac magnetic resonance imaging to “rule in” LGE.Peer Reviewe

    Ventricular Torsion in Young Patients With Single-Ventricle Anatomy.

    No full text
    BACKGROUND: In normal left ventricles, clockwise basal rotation and counterclockwise apical rotation result in systolic torsion. Torsion is important for contractile efficiency and may be especially important in single-ventricle (SV) physiology. However, little is known about torsion in patients with SVs. The aim of this study was to measure torsion in SVs and to determine its relationship with other measures of ventricular function. The hypothesis was that torsion would be decreased in all SVs, most significantly in single right ventricles, and that it would correlate with other measures of ventricular function. METHODS: A prospective cross-sectional study was performed in 61 patients with SVs undergoing pre- or post-Fontan cardiac catheterization and 30 matched control subjects. Echocardiography, catheterization, and cardiac magnetic resonance imaging were performed under the same anesthetic. Torsion and strain were measured using speckle-tracking echocardiography. Intracardiac pressures, pulmonary vascular resistance, and cardiac magnetic resonance imaging-derived ventricular volume and ejection fraction were measured. RESULTS: Thirty-five patients were left ventricular dominant, 15 were right ventricular dominant, 10 were codominant, and one had indeterminate morphology. Thirty-seven patients were pre-Fontan and 24 were post-Fontan. Patients with SVs had similar overall torsion as control subjects (median, 1.7°/cm vs 1.65°/cm; P = NS); however, they had decreased or reversed basal rotation (-0.32°/cm vs -0.93°/cm, P \u3c .0001) and increased apical rotation (1.45°/cm vs 1.06°/cm, P = .0065). There were no differences on the basis of ventricular dominance or palliative stage. Torsion did not significantly correlate with other echocardiographic, catheter-based, or cardiac magnetic resonance imaging measures of cardiac function. CONCLUSIONS: Single left and right ventricles exhibit preserved torsion, mainly because of preserved or increased apical rotation. Possible mechanisms of torsion in single right ventricles include myofiber remodeling and altered ventricular-ventricular interactions. Understanding myocardial deformation in SVs will improve the ability to interpret ventricular function in this precarious population

    Mechanisms of right ventricular electromechanical dyssynchrony and mechanical inefficiency in children after repair of Tetralogy of Fallot

    No full text
    Background—Right bundle branch block and right ventricular (RV) dysfunction are common after tetralogy of Fallot repair (rTOF). We hypothesized that right bundle branch block is associated with specific RV mechanical dyssynchrony and inefficient contraction. Methods and Results—We studied rTOF children and age-matched controls. QRS duration and morphology were assessed. RV mechanical dyssynchrony, indicated by early septal activation (right-sided septal flash), RV lateral wall prestretch/late contraction, postsystolic shortening, and intraventricular delay were analyzed using 2-dimensional strain echocardiography. Peak oxygen consumption reflected exercise capacity. Pulmonary regurgitation and RV volumes were assessed by MRI. Forty-six rTOF patients and 46 controls were studied. Ninety-three percent of rTOF patients demonstrated a right-sided septal flash with simultaneous RV basal lateral wall prestretch/late activation. The RV basal segment was the most delayed in onset (115 [0–194] versus 35 [0–96] ms) and termination (462 [369–706] versus 412 [325–529] ms) of longitudinal shortening, with postsystolic shortening. QRS duration correlated with RV basal time to onset and peak shortening (P<0.05). Intra-RV delay was higher in rTOF (P<0.05) in association with RV dilatation (r=0.33; P=0.04). In rTOF, RV mechanics were inefficient, with prestretch and postsystolic shortening comprising 15±11% and 16±9% of total shortening, respectively. A composite parameter of electric and mechanical dyssynchrony correlated with RV end-diastolic volume (r=0.39; P=0.03). Conclusions—Typical electromechanical dyssynchrony associated with mechanical inefficiency, regional dysfunction, and RV dilatation is common in rTOF children, possibly contributing to progressive RV dysfunction. The potential of cardiac resynchronization in appropriate patients requires further study

    Mechanisms of right ventricular electromechanical dyssynchrony and mechanical inefficiency in children after repair of Tetralogy of Fallot

    No full text
    Background—Right bundle branch block and right ventricular (RV) dysfunction are common after tetralogy of Fallot repair (rTOF). We hypothesized that right bundle branch block is associated with specific RV mechanical dyssynchrony and inefficient contraction. Methods and Results—We studied rTOF children and age-matched controls. QRS duration and morphology were assessed. RV mechanical dyssynchrony, indicated by early septal activation (right-sided septal flash), RV lateral wall prestretch/late contraction, postsystolic shortening, and intraventricular delay were analyzed using 2-dimensional strain echocardiography. Peak oxygen consumption reflected exercise capacity. Pulmonary regurgitation and RV volumes were assessed by MRI. Forty-six rTOF patients and 46 controls were studied. Ninety-three percent of rTOF patients demonstrated a right-sided septal flash with simultaneous RV basal lateral wall prestretch/late activation. The RV basal segment was the most delayed in onset (115 [0–194] versus 35 [0–96] ms) and termination (462 [369–706] versus 412 [325–529] ms) of longitudinal shortening, with postsystolic shortening. QRS duration correlated with RV basal time to onset and peak shortening (P<0.05). Intra-RV delay was higher in rTOF (P<0.05) in association with RV dilatation (r=0.33; P=0.04). In rTOF, RV mechanics were inefficient, with prestretch and postsystolic shortening comprising 15±11% and 16±9% of total shortening, respectively. A composite parameter of electric and mechanical dyssynchrony correlated with RV end-diastolic volume (r=0.39; P=0.03). Conclusions—Typical electromechanical dyssynchrony associated with mechanical inefficiency, regional dysfunction, and RV dilatation is common in rTOF children, possibly contributing to progressive RV dysfunction. The potential of cardiac resynchronization in appropriate patients requires further study
    corecore